首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niemann–Pick C (NPC) disease is a lethal neurodegenerative disorder affecting cellular sterol trafficking. Besides neurodegeneration, NPC patients also exhibit other pleiotropic conditions, indicating that NPC protein is required for other physiological processes. Previous studies indicated that a sterol shortage that in turn leads to a shortage of steroid hormones (for example, ecdysone in Drosophila) is likely to be the cause of NPC disease pathology. We have shown that mutations in Drosophila npc1, one of the two NPC disease-related genes, leads to larval lethal and male infertility. Here, we reported that npc1 mutants are defective in spermatogenesis and in particular in the membrane-remodeling individualization process. Interestingly, we found that ecdysone, the steroid hormone responsible for the larval lethal phenotype in npc1 mutants, is not required for individualization. However, supplying 7-dehydrocholesterol can partially rescue the male infertility of npc1 mutants, suggesting that a sterol shortage is responsible for the spermatogenesis defects. In addition, the individualization defects of npc1 mutants were enhanced at high temperature, suggesting that the sterol shortage may lead to temperature-sensitive defects in the membrane-remodeling process. Together, our study reveals a sterol-dependent, ecdysone-independent mechanism of NPC1 function in Drosophila spermatogenesis.  相似文献   

2.
Summary Conditions are given for the isolation of nystatin resistant mutants of the cellular slime mold Dictyostelium discoideum. These mutants fall into three phenotypic groups; corresponding to three genes: nysA, nysB, and nysC. Mutants in nysB and nysC affect sterol metabolism since they have altered sterol compositions. Each group contains several unique, but as yet unidentified, sterols in place of the wild type sterol. The nysC strains are most nystatin resistant, display altered sensitivity to some drugs, and grow on nystatin from amoebae or spores. All other mutants are nystatin resistant only as amoebae. Although nysC mutants grow normally, they make small fruiting bodies which appear to result from the formation of smaller aggregates.Supported by N.I.H. grant GM 18476  相似文献   

3.
Asymmetric cell division is important for regulating cell proliferation and fate determination during stomatal development in plants. Although genes that control asymmetric division and cell differentiation in stomatal development have been reported, regulators controlling the process from asymmetric division to cell differentiation remain poorly understood. Here, we report a weak allele (fk–J3158) of the Arabidopsis sterol C14 reductase gene FACKEL (FK) that shows clusters of small cells and stomata in leaf epidermis, a common phenomenon that is often seen in mutants defective in stomatal asymmetric division. Interestingly, the physical asymmetry of these divisions appeared to be intact in fk mutants, but the cell‐fate asymmetry was greatly disturbed, suggesting that the FK pathway links these two crucial events in the process of asymmetric division. Sterol profile analysis revealed that the fk–J3158 mutation blocked downstream sterol production. Further investigation indicated that cyclopropylsterol isomerase1 (cpi1), sterol 14α–demethylase (cyp51A2) and hydra1 (hyd1) mutants, corresponding to enzymes in the same branch of the sterol biosynthetic pathway, displayed defective stomatal development phenotypes, similar to those observed for fk. Fenpropimorph, an inhibitor of the FK sterol C14 reductase in Arabidopsis, also caused these abnormal small‐cell and stomata phenotypes in wild‐type leaves. Genetic experiments demonstrated that sterol biosynthesis is required for correct stomatal patterning, probably through an additional signaling pathway that has yet to be defined. Detailed analyses of time‐lapse cell division patterns, stomatal precursor cell division markers and DNA ploidy suggest that sterols are required to properly restrict cell proliferation, asymmetric fate specification, cell‐fate commitment and maintenance in the stomatal lineage cells. These events occur after physical asymmetric division of stomatal precursor cells.  相似文献   

4.
Non‐host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre‐ and post‐invasive resistance responses. Pre‐invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non‐host resistance to P. infestans, a genetic screen was performed by re‐mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2‐1 erp1‐3 and pen2‐1 erp1‐4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T‐DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen‐inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1 psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non‐autonomous defense responses against invasive filamentous pathogens.  相似文献   

5.
The NPC1 family of proteins plays crucial roles in the intestinal absorption and intracellular trafficking of sterols. The Drosophila genome encodes two NPC1 homologs, one of which, NPC1a, is required for intracellular sterol trafficking in many tissues. Here we show that the other Drosophila NPC1 family member, NPC1b, is expressed in the midgut epithelium and that NPC1b is essential for growth during the early larval stages of development. NPC1b mutants are severely defective in sterol absorption, and the midgut epithelium of NPC1b mutants is deficient in sterols and sterol trafficking intermediates. By contrast, NPC1a mutants absorb sterols more efficiently than wild-type animals, and, unexpectedly, NPC1b;NPC1a double mutants absorb sterols as efficiently as wild-type animals. Together, these findings suggest that NPC1b plays an early role in sterol absorption, although sterol absorption continues at high efficiency through an NPC1a- and NPC1b-independent mechanism under conditions of impaired intracellular sterol trafficking.  相似文献   

6.
The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans’ high autofluorescence in the same spectral region as emission of DHE. We present a method to detect DHE selectively, based on its rapid bleaching kinetics compared to cellular autofluorescence. Worms were repeatedly imaged on an ultraviolet‐sensitive wide field (UV‐WF) microscope, and bleaching kinetics of DHE were fitted on a pixel‐basis to mathematical models describing the intensity decay. Bleach‐rate constants were determined for DHE in vivo and confirmed in model membranes. Using this method, we could detect enrichment of DHE in specific tissues like the nerve ring, the spermateca and oocytes. We confirm these results in C. elegans gut‐granule‐loss (glo) mutants with reduced autofluorescence and compare our method with three‐photon excitation microscopy of sterol in selected tissues. Bleach‐rate‐based UV‐WF imaging is a useful tool for genetic screening experiments on sterol transport, as exemplified by RNA interference against the rme‐2 gene coding for the yolk receptor and for worm homologues of Niemann‐Pick C disease proteins. Our approach is generally useful for identifying fluorescent probes in the presence of high cellular autofluorescence.  相似文献   

7.
Mutations in either of the two human Niemann-Pick type C (NPC) genes, NPC1 and NPC2, cause a fatal neurodegenerative disease associated with abnormal cholesterol accumulation in cells. npc1a, the Drosophila NPC1 ortholog, regulates sterol homeostasis and is essential for molting hormone (20-hydroxyecdysone; 20E) biosynthesis. While only one npc2 gene is present in yeast, worm, mouse and human genomes, a family of eight npc2 genes (npc2a-h) exists in Drosophila. Among the encoded proteins, Npc2a has the broadest expression pattern and is most similar in sequence to vertebrate Npc2. Mutation of npc2a results in abnormal sterol distribution in many cells, as in Drosophila npc1a or mammalian NPC mutant cells. In contrast to the ecdysteroid-deficient, larval-lethal phenotype of npc1a mutants, npc2a mutants are viable and fertile with relatively normal ecdysteroid level. Mutants in npc2b, another npc2 gene, are also viable and fertile, with no significant sterol distribution abnormality. However, npc2a; npc2b double mutants are not viable but can be rescued by feeding the mutants with 20E or cholesterol, the basic precursor of 20E. We conclude that npc2a functions redundantly with npc2b in regulating sterol homeostasis and ecdysteroid biosynthesis, probably by controlling the availability of sterol substrate. Moreover, npc2a; npc2b double mutants undergo apoptotic neurodegeneration, thus constituting a new fly model of human neurodegenerative disease.  相似文献   

8.
Thepeach-fluffy-cot mutant ofNeurospora crassa produces neither macroconidia nor ascospores but does differentiate microconidia after a defined length of time. Changes in the composition of sterols, sterol esters, triglycerides, free fatty acids, and phospholipids were followed during vegetative growth and differentiation of microconidia. The changes in free sterols before and during microconidial differentiation indicate a change in lipid metabolism associated with differentiation. Free sterols and sterol esters accumulated in the developing microconidia, but decreased rapidly during microconidial maturation. The fatty acid components remained relatively unchanged except for a significant increase in linoleic acid. The linoleic acid change might be associated with the development of microconidia or it might simply be a reflection of the NADP-deficiency common in many morphological mutants ofN. crassa.  相似文献   

9.
Understanding fluconazole resistance is important as it emerged as a serious clinical problem for this CYP51, sterol 14alpha-demethylase, inhibitor. One mechanism, observed first in Saccharomyces cerevisiae, was through defective sterol C5-desaturase (Erg3p) required to form the fungistatic sterol end-product resulting from CYP51 inhibition, 14alpha-methylergosta-8,24(28)-dien-3beta,6alpha-diol. Here, we report molecular changes resulting in both blocked mutants and also leaky mutants in which reduced ergosterol levels were detected. Blocked mutants exhibited nonsense and frameshift mutations, while leaky mutants contained missense mutations that were generally in conserved positions based on the alignment of sterol C5-desaturases and located mainly between residues 250 and 282.  相似文献   

10.
To obtain mutants containing altered sterol composition and sterol contents, nystatin-resistant mutants were isolated in Zygosaccharomyces rouxii. Two of nine mutants isolated were resistant toward 20 μg of nystatin per ml, while the other seven showed resistance toward 50 μg per ml. However, the seven mutants could not grow at 35°C. TN5, a mutant of the first group, showed the same sterol composition as the wild type strain, with ergosterol and zymosterol as major sterols, whereas it contained free sterols about 70% of those of the wild type. TN1 and TN3, representative mutants of the second group, had altered sterol compositions, containing three major sterols, zymosterol, ergosta-5,7,24-trienol, and an unidentified sterol. TN1 and TN3 could not grow in YPD medium containing more than 8% NaCl, whereas TN5 grew in the same medium containing 15% NaCl after a longer lag phase than the wild type strain. TN1 and TN3, in particular TN3, when incubated in YPD medium containing 15% NaCl, leaked significant amounts of glycerol. Protoplasts of these mutants were more labile than those of the wild-type cells. These facts suggest that the amount and kind of ergosterol in the cell membrane might be concerned with the salt tolerance of Z. rouxii.  相似文献   

11.
Biosynthesis of steroidal plant hormones, brassinosteroids, was studied using the cell culture system of Catharanthus roseus. Feeding labeled compounds of possible intermediates to the cultured cells, followed by analyzing the metabolites by gas chromatography-mass spectrometry disclosed the pathways from a plant sterol, campesterol, to brassinolide. There are two pathways, named the early C6-oxidation pathway and late C6-oxidation pathway, both of which would be operating in a wide variety of plants. Recent findings of brassinosteroid-deficient mutants of Arabidopsis and the garden pea by several groups, and the possible blocked steps of the mutants in the biosynthetic pathways are also introduced.  相似文献   

12.
Fluorescence anisotropy measurements indicated that physical changes occured in the lipids of plasma membranes of yeast sterol mutants but not in the plasma membrane of an ergosterol wild-type. Parallel experiments with model membrane liposomes verified that the physical changes in lipids observed in the sterol mutants are dependent on the sterol present and not the phospholipid composition. In addition, the physical changes in lipids observed in liposomes derived from wild-type phospholipids were eliminated by addition of ergosterol but persisted in the presence of cholesterol, cholestanol, ergostanol, or sterols from the sterol mutants. No physical changes in lipids were observed, however, in plasma membranes from a sterol auxotroph, even when the auxotroph was grown on cholesterol or cholestanol. The lack of physical changes in lipids in the sterol auxotroph may reflect the ability of the auxotroph to modify its phospholipid composition with respect to its sterol composition. These results indicate that high specificity ‘sparking’ sterol is not required for the regulation of overall bulk lipid properties of the plasma membrane.  相似文献   

13.
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin‐related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol‐enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye‐labelled plasma membrane, providing evidence that DRP1E localizes non‐uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol‐enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.  相似文献   

14.
The let-767 gene encodes a protein that is similar to mammalian steroid enzymes that are responsible for the reduction of 17-beta hydroxysteroid hormones. Caenorhabditis elegans is incapable of the de novo synthesis of cholesterol. Therefore, this free-living nematode must extract cholesterol from its environment and modify it to form steroid hormones that are necessary for its survival. C. elegans is unable to survive in the absence of supplemental cholesterol, and is therefore sensitive to cholesterol limitation. We show that a mutation in let-767 results in hypersensitivity to cholesterol limitation, supporting the hypothesis that LET-767 acts on a sterol derivative. Furthermore, let-767 mutants exhibit defects in embryogenesis, female reproduction and molting. Although ecdysone is the major molting hormone in insects, there is as yet no evidence for ecdysone synthesis in C. elegans, suggesting that a different hormone is required for molting in C. elegans. Our results suggest that LET-767 modifies a sterol hormone that is required both for embryogenesis and for later stages of development.Communicated by C. P. Hollenberg  相似文献   

15.
Nystatin-Resistant Mutants of Yeast: Alterations in Sterol Content   总被引:15,自引:3,他引:12       下载免费PDF全文
Mutants of the genes nys1 and nys3 differ from sensitive strains (nys(+)) in their sterol content. Ultraviolet absorption spectra of the nonsaponifiable material extracted from cells of nys(+) demonstrated the presence of ergosterol and 24(28)-dehydroergosterol. In nys1 mutants, the spectrum suggests the presence of a new sterol. The absorption spectrum of extracts from nys3 mutants indicates absence of both ergosterol and 24(28)-dehydroergosterol and presence of another new sterol. Conversion of nys(+) and nys3 to petite results in loss of 24(28)-dehydroergosterol in the former and the new sterol in the latter, whereas the new sterol in nys1 is only reduced. The sterols in ethanol-grown cells of all genotypes are essentially the same as is found for growth on glucose. With the exception of nys3 grown on ethanol, the mutants do not appear to be at a disadvantage compared to wild type.  相似文献   

16.
Isolation of pleiotropic yeast mutants requiring ergosterol for growth   总被引:7,自引:0,他引:7  
Mutant strains of Saccharomyces cerevisiae which require ergosterol for growth have been isolated. These mutants are all petite and require a fatty acid. Several mutants require methionine in addition. These mutants have been classified into 6 complementation groups. For one of the mutants the enzymatic block has been localized after lanosterol. These mutants do not show a stringent requirement for ergosterol, as sitosterol, stigmasterol or cholesterol also support growth. Mutants of this type will be of value not only in studies of sterol biosynthesis, but also in assessing the biological role of sterols in the cytoplasmic yeast membrane. Similar mutants but without a stringent requirement for a sterol have been previously isolated by Resnick and Mortimer (8).  相似文献   

17.
Plasma membranes from Saccharomyces cerevisiae were prepared by a new procedure involving lyticase treatment of the yeast cells. The plasma membranes were right-side-out, closed vesicles of uniform appearance with a sterol to phospholipid molar ratio of 0.365. The thermotropic behavior of these plasma membranes from wild-type yeast and from sterol mutants was examined by differential scanning calorimetry, fluorescence anisotropy and Arrhenius kinetics of plasma membrane enzymes. While differential scanning calorimetry failed to demonstrate any lipid transition, fluorescence anisotropy data indicated that lipid transitions were occurring in the plasma membranes of the yeast sterol mutants but not the sterol wild-type. The temperature dependence of the plasma membrane enzymes, chitin synthase and Mg2+-ATPase, was also investigated. The Arrhenius kinetics of chitin synthase did not reveal any transitions in either the sterol mutant or wild-type plasma membranes, yet the Arrhenius kinetics of the Mg2+-ATPase suggested that lipid transitions were occurring in both cases.  相似文献   

18.
《Autophagy》2013,9(1):17-20
Autophagy is a degradative pathway conserved among eukaryotes. It is a major route for degradation of long-lived proteins and entire organelles, such as peroxisomes. Atg26, a sterol glucosyltransferase, is specifically required for micro- and macropexophagy, but not for starvation-induced bulk autophagy in Pichia pastoris. Here we study the requirement of Saccharomyces cerevisiae Atg26 in the Cvt pathway, nonspecific autophagy and pexophagy. Our results show that the S. cerevisiae atg26? strain is not defective in prApe1 maturation, macroautophagy or peroxisome degradation, in contrast to the situation seen in Pichia pastoris. These studies highlight the importance of examining mutants in multiple organisms.  相似文献   

19.
Arrhenius kinetics of two mitochondrial enzymes, cytochrome oxidase and S-adenosylmethionine: Δ 24 sterol methyltransferase were analyzed in wild-type and sterol mutant strains of yeast. Temperature effects on the enzymes isolated from the ergosterol producing wild-type and nystatin resistant mutants (major sterol Δ8(9), 22 ergostadiene-3-β-ol) were compared. Transition temperatures were lower in both mutant strains compared to wild-type. Lipid analysis shows a relationship between sterol content and the temperature dependent transition phases.  相似文献   

20.
In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub‐family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing ‘half transporters’ are semi‐dominant and result in vascular patterning defects in cotyledons and the floral stem. Co‐immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号