首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Uptake of monoamines into secretory granules is mediated by the vesicular monoamine transporters VMAT1 and VMAT2. In this study, we analyzed their expression in inflammatory and hematopoietic cells and in patients suffering from systemic mastocytosis (SM) and chronic myelogenous leukemia (CML). Normal human and monkey tissue specimens and tissues from patients suffering from SM and CML were analyzed by means of immunohistochemistry, radioactive in situ hybridization, real time RT-PCR, double fluorescence confocal laser scanning microscopy, and immunoelectron microscopy. In normal tissue specimens, VMAT2, but not VMAT1, was expressed in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells. Further hematopoietic and lymphoid cells showed no expression of VMATs. VMAT2 was expressed in all types of SM, as indicated by coexpression with the mast cell marker tryptase. In CML, VMAT2 expression was retained in neoplastic megakaryocytes and basophil granulocytes. In conclusion, the identification of VMAT2 in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells provides evidence that these cells possess molecular mechanisms for monoamine storage and handling. VMAT2 identifies normal and neoplastic mast cells, megakaryocytes, and basophil granulocytes and may therefore become a valuable tool for the diagnosis of mastocytosis and malignant systemic diseases involving megakaryocytes and basophil granulocytes.  相似文献   

2.
Monoamine storage in secretory granules is mediated by the vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2). The aim of our study was to identify monoamine-handling normal and neoplastic inflammatory cells in the skin by their expression of VMAT1 and VMAT2. Normal skin from various parts of the body, as well as 21 cases of cutaneous mastocytosis and 10 cases of cutaneous Langerhans cell histiocytosis were analyzed by immunohistochemistry, radioactive in situ hybridization, and double-fluorescence confocal microscopy. VMAT2-positive cells in the subepidermal layer were identified as mast cells by their expression of tryptase. Neoplastic mast cells in all cases of cutaneous mastocytosis retained their VMAT2 positivity. The intraepidermal VMAT2-expressing cells were identified as Langerhans cells by their CD1a positivity. VMAT2 was absent from Langerhans cell histiocytosis. VMAT2 is an excellent marker for normal and neoplastic mast cells. The expression of VMAT2 demonstrates the capacity of mast cells for monoamine storage and handling. The presence of VMAT2 in epidermal Langerhans cells revealed a previously unrecognized monoamine-handling phenotype of these cells and indicates possible involvement of amine storage and release associated with antigen presentation. Absence of VMAT2 in neoplastic Langerhans cells indicates a loss of monoamine handling capacity of these cells during tumorigenesis.  相似文献   

3.
Vesicular monoamine transporter 2 (VMAT2) is expressed in pancreatic beta cells and has recently been proposed as a target for measurement of beta cell mass in vivo. We questioned, (1) What proportion of beta cells express VMAT2? (2) Is VMAT2 expressed by other pancreatic endocrine or non-endocrine cells? (3) Is the relationship between VMAT2 and insulin expression disturbed in type 1 (T1DM) or type 2 diabetes (T2DM)? Human pancreas (7 non-diabetics, 5 T2DM, 10 T1DM) was immunostained for insulin, VMAT2 and other pancreatic hormones. Most beta cells expressed VMAT2. VMAT2 expression was not changed by the presence of diabetes. In tail of pancreas VMAT2 immunostaining closely correlated with insulin staining. However, VMAT2 was also expressed in some pancreatic polypeptide (PP) cells. Although VMAT2 was not excluded as a target for beta cell mass measurement, expression of VMAT2 in PP cells predicts residual VMAT2 expression in human pancreas even in the absence of beta cells.  相似文献   

4.
The preproglucagon gene encodes, in addition to glucagon, two smaller peptides with structural similarity: glucagon-like peptides 1 and 2. Glucagon-like peptide 1 (GLP-1) 7–36 amide is the most powerful incretin candidate. In the present study, GLP-1 immunoreactivity was investigated in tissue specimens of various types of gastroenteropancreatic tumors, and the serum-levels of GLP-1 were assayed. Immunohistochemical staining of 88 tumors revealed GLP-1 immunoreactivity in 17 neoplasias (19.3 %), viz., in 7 out of 33 non-functioning tumors, 4 out of 20 gastrinomas, 4 out of 13 insulinomas, 1 out of 3 vasoactive-intestinal-polypeptide (VIP)omas and 1 adrenocorticotropic-hormone (ACTH)-producing tumor. In these tumors, GLP-1-immunoreactive cells were distributed either diffusely, arranged in clusters, or as single cells. All GLP-1-positive tumors were immunoreactive for glucagon or glicentin, 10 tumors were immunoreactive for pancreatic polypeptide, and 8 tumors for insulin. Ultrastructural analysis of 8 GLP-1-positive tumors, with the immunogold technique, demonstrated GLP-1 immunoreactivity mainly in cells resembling the A-cells of the pancreas or the L-cells of the gut. Of the 17 GLP-1-immunoreactive tumors, 15 were primarily located in the pancreas. Additionally, 2 non-functioning tumors of the rectum were GLP-1 immunoreactive. Five tumors were GLP-1 immunoreactive from 9 patients with multiple endocrine neoplasia I syndrome. Patients with GLP-1-immunoreactive tumors were characterized by a significantly lower rate of distant metastases (P<0.01) and a higher rate of curative resections (P<0.05). In 2 out of 22 patients, elevated serum-levels of GLP-1 were found: one patient with a vasoactive-intestinal-polypeptide (VIP)oma and 1 patient with a non-functioning tumor. This indicates that GLP-1 might be secreted at least by a few gastroenteropancreatic endocrine tumors.  相似文献   

5.
Pancreatic islet immunoreactivity to the Reg protein INGAP.   总被引:1,自引:0,他引:1  
The Reg-related protein family member INGAP (islet neogenesis-associated protein) is a pleiotropic factor enhancing islet neogenesis, neurite growth, beta-cell protection, and beta-cell function. Using an antibody to the N-termini of INGAP, we have identified that immunoreactivity to INGAP localized to the pancreatic endocrine cells in mouse. INGAP- and insulin-immunoreactive cells are mutually exclusive, with INGAP-immunoreactive cells being preserved after streptozotocin-mediated destruction of beta-cells. Glucagon- and INGAP-immunoreactive cells colocalize, although respective antigen expression occurs in different intracellular locations. These data suggest that INGAP-immunoreactive cells include alpha-cells; however, detection of single INGAP-immunoreactive/glucagon-negative cells indicates that this may not be exclusive. In addition to mouse, detection of islet endocrine cells that were INGAP immunoreactive/glucagon immunoreactive/insulin negative was also observed in islets from human, monkey, and rat. These findings reveal that INGAP and/or related group 3 Reg proteins have a conserved expression in the pancreatic islet.  相似文献   

6.
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.  相似文献   

7.
The vesicular neurotransmitter transporter VMAT2 is responsible for the transport of monoamines into synaptic and storage vesicles. VMAT2 is the target of many psychoactive drugs and is essential for proper neurotransmission and survival. Here we describe a new expression system in Saccharomyces cerevisiae that takes advantage of the polyspecificity of VMAT2. Expression of rVMAT2 confers resistance to acriflavine and to the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) by their removal into the yeast vacuole. This expression system allowed identification of a new substrate, acriflavine, and isolation of mutants with modified affinity to tetrabenazine (TBZ), a non-competitive inhibitor of VMAT2 that is used in the treatment of various movement disorders including Tourette syndrome and Huntington chorea. Whereas one type of mutant obtained displayed decreased affinity to TBZ, a second type showed only a slight decrease in the affinity to TBZ, displayed a higher Km to the neurotransmitter serotonin, but conferred increased resistance to acriflavine and MPP+. A protein where both types of mutations were combined (with only three amino acid replacements) lost most of the properties of the neurotransmitter transporter (TBZ-insensitive, no transport of neurotransmitter) but displayed enhanced resistance to the above toxicants. The work described here shows that in the case of rVMAT2, loss of traits acquired in evolution of function (such as serotonin transport and TBZ binding) bring about an improvement in older functions such as resistance to toxic compounds. A process that has taken millions of years of evolution can be reversed by three mutations.  相似文献   

8.
The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles in preparation for neurotransmission. Samples of cerebellum, cortex, hippocampus, substantia nigra and striatum from VMAT2-deficient mice were compared to age-matched control mice. Multivariate statistical analyses of 1H NMR spectral profiles separated VMAT2-deficient mice from controls for all five brain regions. Although the data show that metabolic alterations are region- and age-specific, in general, analyses indicated decreases in the concentrations of taurine and creatine/phosphocreatine and increases in glutamate and N-acetyl aspartate in VMAT2-deficient mouse brain tissues. This study demonstrates the efficacy of metabolomics as a functional genomics phenotyping tool for mouse models of neurological disorders, and indicates that mild reductions in the expression of VMAT2 affect normal brain metabolism. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

9.
10.
《The Journal of cell biology》1994,127(5):1419-1433
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.  相似文献   

11.
Endocrine cells are continually regulating the balance between hormone biosynthesis, secretion, and intracellular degradation to ensure that cellular hormone stores are maintained at optimal levels. In pancreatic beta-cells, intracellular insulin stores in beta-granules are mostly upheld by efficiently up-regulating proinsulin biosynthesis at the translational level to rapidly replenish the insulin lost via exocytosis. Under normal circumstances, intracellular degradation of insulin plays a relatively minor janitorial role in retiring aged beta-granules, apparently via crinophagy. However, this mechanism alone is not sufficient to maintain optimal insulin storage in beta-cells when insulin secretion is dysfunctional. Here, we show that despite an abnormal imbalance of glucose/glucagon-like peptide 1 regulated insulin production over secretion in Rab3A(-/-) mice compared with control animals, insulin storage levels were maintained due to increased intracellular beta-granule degradation. Electron microscopy analysis indicated that this was mediated by a significant 12-fold up-regulation of multigranular degradation vacuoles in Rab3A(-/-) mouse islet beta-cells (P 相似文献   

12.
Pancreatic endocrine tumors (PETs) are rare neoplasms of this organ. The majority of PETs are tumors without hormonal activity. In this publication, we present the diagnostic and therapeutic guidelines for the management of these tumors proposed by the Polish Network of Neuroendocrine Tumors. These guidelines refer to biochemical and location diagnostics, including scintygraphy of somatostatin receptors, endoscopic ultrasonography and other anatomical and functional imaging methods. High importance is attached to correct histopathological diagnosis which determines further management of patients with PETs. Antitumor therapy requires multidirectional procedure, and therefore the rules of surgical treatment, biotherapy, chemotherapy and peptide receptor radionuclide therapy are discussed.  相似文献   

13.
Cx36 and the function of endocrine pancreas   总被引:4,自引:0,他引:4  
The secretory, duct, connective and vascular cells of pancreas are connected by gap junctions, made of different connexins. The insulin-producing beta-cells, which form the bulk of endocrine pancreatic islets, express predominantly Cx36. To assess the function of this connexin, we have first studied its expression in rats, during sequential changes of pancreatic function which were induced by the implantation of a secreting insulinoma. We observed that changes in beta-cell function were paralleled by changes in Cx36 expression. We have also begun to investigate mutant mice lacking Cx36. The absence of this protein did not affect the development and differentiation of beta-cells but appeared to alter their secretion. We have studied this effect in MIN6 cells which spontaneously express Cx36. After stable transfection of a construct that markedly reduced the expression of this connexin, we observed that MIN6 cells were no more able to secrete insulin, in contrast to wild type controls, and differentially displayed a series of still unknown genes. The data provide evidence that Cx36-dependent signaling contributes to regulate the function of native and tumoral insulin-producing cells.  相似文献   

14.
Our aim was to investigate whether a defect in vesicular monoamine transporter-2 (VMAT2) activities would affect dopaminergic cell functions or not. We examined mesencephalon dopaminergic cultures prepared from VMAT2 wild-type, heterozygous or homozygous knockout (KO) 14-day-old mouse fetuses to determine the number of tyrosine hydroxylase (TH)-positive cells and dopamine transporter activity. The number of TH-positive cells remained unchanged in the VMAT2-KO cultures. Of interest, the dopamine transporter activity in the homozygous cells was significantly decreased, but not in the heterozygous cells, suggesting that complete deletion of VMAT2 inhibited dopamine transporter function. Furthermore, dopamine transporter activity was prominently decreased in the synaptosomal fraction of neonatal homozygous VMAT2-KO mice compared with that of wild-type/heterozygous VMAT2-KO ones, indicating that VMAT2 activity might be one of the factors regulating dopamine transporter activities. To test this possibility, we used reserpine, a VMAT2 inhibitor. Reserpine (1muM) decreased dopamine transporter activity (approx. 50%) in wild-type and heterozygous VMAT2-KO cultures but not in homozygous ones, indicating that blockade of VMAT2 activity reduced dopamine transporter activity. To investigate possible mechanisms underlying the decreased dopamine transporter activity in VMAT2-KO mice, we measured dopamine transporter activities after 24-48h exposure of primary cultures of mesencephalic neurons to dopamine receptor antagonists, PKC inhibitor, PI(3)K inhibitor, and l-DOPA. Among these drugs, l-DOPA slightly reduced the dopamine transporter activities of all genotypes, but the other drugs could not. Since the ratios of reduction in dopamine transporter activity of each genotype treated with l-DOPA were similar, substrate inhibition of dopamine transporters was not the main mechanism underlying the reduced dopamine transporter activity due to genetic deletion of VMAT2. Our results demonstrate that genetic deletion of VMAT2 did not induce immediate cell death but did markedly inhibit dopamine transporter activity.  相似文献   

15.
The endocrine cells of the pancreas develop from the endoderm and yet display several characteristics of a neuronal phenotype. During embryonic life, ductal epithelial cells give rise to first the glugagon-producing cells (alpha-cells) and then cells that express insulin (beta-cells), somatostatin (delta-cells), and pancreatic polypeptide (PP-cells) in a sequential order. The endocrine cells are believed to arise from a stem cell with neuronal traits. The developmental lineage from a common neuron-like progenitor is evidenced by: transient coexpression of more than one cell type-specific hormone in immature cells, expression of neuronal markers during islet cell development, and the pluripotentiality of clones of insulinoma cells to develop into cells expressing other islet cell hormones. The four mature endocrine cell types assume a particular organization within the islets of Langerhans in a process where cell adhesion molecules are involved. In this study we have analyzed the expression of neural cell adhesion molecule (NCAM) and cadherin molecules in neonatal, young, and adult rat islet cells as well as in glucagonomas and insulinomas derived from a pluripotent rat islet cell tumor. Whereas primary islet cells at all ages express unsialylated NCAM and E-cadherin, as do insulinomas, the glucagonomas express the polysialylated NCAM, which is characteristic for developing neurons. The glucagonomas also lose E-cadherin expression and instead express a cadherin which is similar to N-cadherin in brain. Insulinoma cells express E-cadherin but differ from primary islet cells by expressing a second cadherin molecule, which is similar to N-cadherin. The expression of NCAM and cadherin isoforms in the glucagonoma suggest that this transformed alpha-cell type has converted to an immature phenotype with strong neuronal traits, reflecting the early palce of glucagon-producing cells in the islet cell lineage. In contrast, insulinoma cells are more islet-like in their phenotype and show less neuronal traits.  相似文献   

16.
17.

Background

PERK eIF2α kinase is required for the proliferation of the insulin-secreting beta- cells as well as insulin synthesis and secretion. In addition, PERK signaling has been found to be an important factor in determining growth and angiogenesis of specific types of tumors, and was attributed to PERK-dependent regulation of the hypoxic stress response. In this report we examine the role of PERK in regulating proliferation and angiogenesis of transformed beta-cells in the development of insulinomas.

Methodology

The SV40 Large T-antigen (Tag) was genetically introduced into the insulin secreting beta-cells of Perk KO mice under the control of an inducible promoter. Tumor growth and the related parameters of cell proliferation were measured. In late stage insulinomas the degree of vascularity was determined.

Principal Findings

The formation and growth of insulinomas in Perk-deficient mice was dramatically ablated with much fewer tumors, which averaged 38-fold smaller than seen in wild-type control mice. Beta-cell proliferation was ablated in Perk-deficient mice associated with reduced tumor growth. In the small number of large encapsulated insulinomas that developed in Perk-deficient mice, we found a dramatic reduction in tumor vascularity compared to similar sized insulinomas in wild-type mice. Although insulinoma growth in Perk-deficient mice was largely impaired, beta-cell mass was increased sufficiently by T-antigen induction to rescue the hypoinsulinemia and diabetes in these mice.

Conclusions

We conclude that PERK has two roles in the development of beta-cell insulinomas, first to support rapid cell proliferation during the initial transition to islet hyperplasia and later to promote angiogenesis during the progression to late-stage encapsulated tumors.  相似文献   

18.
Vesicular monoamine transporters (VMATs) are involved in chemical transduction in monoaminergic neurons and various endocrine cells through the storage of monoamines in secretory vesicles. Mammalian pinealocytes contain more 5-hydroxytryptamine (5-HT) than any other cells and are expected to contain VMAT, although no information is available so far. Upon the addition of ATP, radiolabeled 5-HT was taken up by a particulate fraction prepared from cultured rat pinealocytes. The 5-HT uptake was inhibited significantly by bafilomycin A1 (an inhibitor of vacuolar H+-ATPase), 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (a proton conductor), or reserpine (an inhibitor of VMAT). RT-PCR analysis suggested that VMAT type 1 (VMAT1), but not type 2, is expressed. Antibodies against VMAT1 recognized a single polypeptide with an apparent molecular mass of approximately 55 kDa, and specifically immunostained pinealocytes. VMAT1 immunoreactivity was high in the vesicular structures in the varicosities of long branching processes and was associated with 5-HT, but not with synaptophysin, a marker protein for microvesicles. The 5-HT immunoreactivity in the long branching processes disappeared upon incubation with reserpine. These results indicate that 5-HT, at least in part, is stored in vesicles other than microvesicles in pinealocytes through a mechanism similar to that of various secretory vesicles.  相似文献   

19.
The origin of insulin-expressing beta-cells in the adult mammalian pancreas is controversial. During normal tissue turnover and following injury, beta-cells may be replaced by duplication of existing beta-cells.1 However, an alternative source of beta-cells has recently been proposed based on neogenesis from a Ngn3-positive population present in regenerating pancreatic ducts.2 The appearance of beta-cells from Ngn3-positive progenitors is reminiscent of normal pancreas development, and Ngn3-expressing cells isolated from regenerating pancreas can generate the full repertoire of endocrine phenotypes. The isolation and characterisation of the equivalent human progenitors may represent a significant step forward in the hunt for a cure for diabetes.  相似文献   

20.
The non-neuronal monoamine transporters (OCT1, OCT2, EMT, and PMAT) play a key role in the clearance of monoamines from extracellular compartments. In a previous report we described endometrial distribution and cyclic variation of the vesicular monoamine transporter (VMAT2) mRNA and the neuronal norepinephrine transporter (NET) mRNA. In the present study we used in situ hybridization, real-time PCR and immunohistochemistry to reveal tissue distribution and cyclic variation of mRNA for the non-neuronal monoamine transporters in the human endometrium and early pregnancy decidua. We found that non-neuronal monoamine transporters are predominantly expressed in the stroma. The plasma membrane monoamine transporter (PMAT) mRNA expression peaked in the proliferative phase, whereas the extra-neuronal monoamine transporter (EMT) mRNA expression peaked in the secretory phase. The organic cation transporter 2 (OCT2) mRNA expression was exclusively detected in few scattered stromal cells and OCT1 mRNA was not detected at all. Our present results demonstrate that PMAT, EMT, and OCT2 transporters are expressed in the endometrial stroma and can potentially regulate reuptake of monoamines in general and histamine in particular. Taken together with our previous finding of VMAT2 mRNA in epithelial cells, we suggest a paracrine interaction between stromal and epithelial cells, which may modulate certain steps of the reproductive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号