首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mating reaction in Tetrahymena thermophila includes a starvation period and two distinct cell interactions, co-stimulation and cell pairing, before the cells are cytoplasmically joined as conjugants. A selection procedure for harvesting mutants unable to mate at a restrictive temperature has been developed. A conjugant pair consisting of one cycloheximide-resistant cell and one wild-type cell (cycloheximide-sensitive) was itself sensitive to the drug. By adding cycloheximide and nutrient medium to a cross made at the restrictive and grow. Repetition of the selection procedure enriched for cells unable to conjugate at the restrictive temperature. The selected cells were able to grow at 38 degrees C and could conjugate at 28 degrees C. This procedure may be narrowed to select specifically for cell interaction mutants.  相似文献   

2.
Three temperature-sensitive morphological mutants of Wangiella dermatitidis were isolated and characterized. The mutants grew in the yeastlike morphology at the permissive temperature (25 degrees C) but expressed a multicellular (Mc) phenotype at the restrictive temperature (37 degrees C). Cultures of Mc 2 and 3 incubated at the restrictive temperature showed rapid reductions in the percentage of budded cells in the population. In contrast, budding continued for several generations in cultures of Mc 1. Incubation of cultures of Mc 2 and 3 at the restrictive temperature for 48 h resulted in nearly total conversion of yeastlike cells to the multicellular form; about 50% of the cells of Mc 1 had converted to multicellular forms after 48 h at the restrictive temperature. Studies using radiolabeled compounds documented that DNA, RNA, and protein synthesis continued at the restrictive temperature. The results suggest that multicellularity is the result of inhibition of bud emergence and cell separation without inhibition of growth nuclear division, and cytokinesis.  相似文献   

3.
We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.  相似文献   

4.
DNA supercoiling in gyrase mutants.   总被引:17,自引:7,他引:10       下载免费PDF全文
Nucleoids isolated from Escherichia coli strains carrying temperature-sensitive gyrA or gyrB mutations were examined by sedimentation in ethidium bromide-containing sucrose density gradients. A shift to restrictive temperature resulted in nucleoid DNA relaxation in all of the mutant strains. Three of these mutants exhibited reversible nucleoid relaxation: when cultures incubated at restrictive temperature were cooled to 0 degree C over a 4- to 5-min period, supercoiling returned to levels observed with cells grown at permissive temperature. Incubation of these three mutants at restrictive temperature also caused nucleoid sedimentation rates to increase by about 50%.  相似文献   

5.
We examined the effects of large T antigen of simian virus 40 (SV40) on the proliferation phenotypes of temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts, which cease proliferating in the G1 phase of the cell cycle at a restrictive temperature (39.8 degrees C). Four ts mutants, each representing independent complementation groups, were transformed with the dl-884 mutant of SV40 which lacks the unique coding region for small t antigen. In the case of two ts mutants, their transformed derivatives did not cease proliferation at 39.8 degrees C. In the other two mutants, the transformed cells continued to enter the S phase but the cells became detached from the dishes thereafter, at 39.8 degrees C. The proliferation phenotypes of the dl-884-transformed cells at 39.8 degrees C were quite similar with those of the same mutants transformed with the wild-type SV40. These results indicate that large T antigen alone is sufficient to overcome the inhibition of cellular entry into S phase caused by four different ts defects and determines the proliferation phenotypes of the cells after entering the S phase at a restrictive temperature, and that small t antigen does not alter the cellular phenotypes determined by large T antigen.  相似文献   

6.
A collection of temperature-sensitive mutants of Streptomyces coelicolor A3(2) was isolated. The majority of the mutants showed an osmotically remedial phenotype. Mutants defective in macromolecular synthesis were identified and characterized further. Four mutants were found in which DNA replication was defective, but which continued to synthesize RNA and protein at the restrictive temperature (39 degrees C). The kinetics of cessation of DNA synthesis allowed a tentative identification of slow (initiation) and fast (elongation) stop dna mutants. The inhibition of DNA replication in the four mutants was found to be reversible on returning to the permissive temperature (30 degrees C), but only after a delay of about 2 h. Three other mutants were identified which showed not only cessation of DNA replication at the restrictive temperature, but also defects in other macromolecular synthesis events.  相似文献   

7.
Temperature-sensitive dnaJ mutants of Escherichia coli showed a thermosensitive defect in the synthesis of beta-galactosidase. Synthesis of the lac mRNA was greatly reduced at the restrictive temperature. The mutants were also conditionally defective in the synthesis of a subset of membrane proteins such as succinate dehydrogenase, whereas the synthesis of anthranilate synthetase, encoded by trpED, as well as that of most cellular proteins, was unaffected at the restrictive temperature. The defect was specific for the dnaJ mutants among several dna mutants which are known to be involved in the initiation of DNA synthesis: dnaK, dnaA, and dnaB mutants synthesized each of these proteins normally even at the restrictive temperature. At the restrictive temperature, growth of the dnaJ mutants was arrested at a specific stage of the cell cycle.  相似文献   

8.
Isolation of a wide variety of temperature-sensitive (ts) cell cycle mutants in mammalian cells has previously proved to be a very difficult task. The various procedures used for the isolation of such mutants included a mutant enrichment step based on exposure of the cells to the restrictive temperatures in order to kill the growing wild-type cells with agents that kill DNA-synthesizing cells. Hence, these methods favored the isolation of ts mutants that do not lose viability rapidly at the restrictive temperatures, We have treated cells of the Chinese hamster established cell line E36 with the mutagen ethyl-methane-sulfonate (EMS) and used a replicaplating technique that we developed to screen the ts mutants for growth. This technique enabled us to recover all ts mutants for growth including the ts cell cycle mutants. Screening of the ts cell cycle mutants among the ts mutants for growth was performed by the flow microfluorimetry technique and the premature chromosome condensation technique. Our results show that 1.3% of the survivors of the mutagenic treatment are ts mutants for growth. Six of 84 ts mutants analyzed were found to be ts cell cycle mutants. They include ts mutants arrested in phases G1, S, and G2. Many of the ts mutants for growth including the ts cell cycle mutants arrested in S and G2 lose viability very fast when incubated at the restrictive temperature. As a consequence they could not have been isolated by any method that includes a mutant enrichment step based on the exposure of the cells to the restrictive temperature.  相似文献   

9.
Regulation of mating in the cell cycle of Saccharomyces cerevisiae   总被引:19,自引:5,他引:14       下载免费PDF全文
The capacity of haploid a yeast cells to mate (fuse with a haploid strain of alpha mating type followed by nuclear fusion to produce a diploid cell) was assessed for a variety of temperature-sensitive cell division cycle (cdc) mutants at the permissive and restrictive temperatures. Asynchronous populations of some mutants do not mate at the restrictive temperature, and these mutants define genes (cdc 1, 4, 24, and 33) that are essential both for the cell cycle and for mating. For most cdc mutants, asynchronous populations mate well at the restrictive temperature while populations synchronized at the cdc block do not. Populations of a mutant carrying the cdc 28 mutation mate well at the restrictive temperature after synchronization at the cdc 28 step. These results suggest that mating can occur from the cdc 28 step, the same step at which mating factors arrest cell cycle progress. The cell cycle interval in which mating can occur may or may not extend to the immediately succeeding and diverging steps (cdc 4 and cdc 24). High frequency mating does not occur in the interval of the cell cycle extending from the step before the initiation of DNA synthesis (cdc 7) through DNA synthesis (cdc 2, 8, and 21), medial nuclear division (cdc 13), and late nuclear division (cdc 14 and 15).  相似文献   

10.
A large number of mutants that are temperature sensitive (ts) for growth have been isolated from mouse mammary carcinoma FM3A cells by an improved selection method consisting of cell synchronization and short exposures to restrictive temperature. The improved method increased the efficiency of isolating DNA ts mutants, which showed a rapid decrease in DNA-synthesizing ability after temperature shift-up. Sixteen mutants isolated by this and other methods were selected for this study. Flow microfluorometric analysis of these mutants cultured at a nonpermissive temperature (39 degrees C) for 16 h indicated that five clones were arrested in the G1 to S phase of the cell cycle, six clones were in the S to G2 phase, and two clones were arrested in the G2 phase. The remaining three clones exhibited 8C DNA content after incubation at 39 degrees C for 28 h, indicating defects in mitosis or cytokinesis. These mutants were classified into 11 complementation groups. All the mutants except for those arrested in the G2 phase and those exhibiting defects in mitosis or cytokinesis showed a rapid decrease in DNA synthesis after temperature shift-up without a decrease in RNA and protein synthesis. The polyomavirus DNA cell-free replication system, which consists of polyomavirus large tumor antigen and mouse cell extracts, was used for further characterization of these DNA ts mutants. Among these ts mutants, only the tsFT20 strain, which contains heat-labile DNA polymerase alpha, was unable to support the polyomavirus DNA replication. Analysis by DNA fiber autoradiography revealed that DNA chain elongation rates of these DNA ts mutants were not changed and that the initiation of DNA replication at the origin of replicons was impaired in the mutant cells.  相似文献   

11.
S-phase, G2, and nuclear division mutants of Aspergillus nidulans   总被引:6,自引:0,他引:6       下载免费PDF全文
Twenty-two temperature-sensitive cell cycle mutants of the fungus Aspergillus nidulans, which block in interphase at restrictive temperature, were analyzed by the reciprocal shift method of Jarvik and Botstein (Proc. Nath Acad. Sci. U.S.A. 70:2046-2050, 1973) and Hereford and Hartwell (J. Mol. Biol. 84:445-461, 1974) to determine whether these mutations were blocked at the G1, S, or G2 phase of the cell cycle. We found five mutants to be blocked in S and nine to be blocked in G2. Two of the G2 mutants were atypical in that they were not able to accomplish the G2 to M transition at restrictive temperature but nevertheless could initiate subsequent cycles of DNA replication. None was blocked in G1. There were nine strains that could not be classified. The block imposed by restrictive temperature was irreversible in three of these strains, and the six other strains were unclassifiable due to their aberrant terminal nuclear phenotypes.  相似文献   

12.
Conditional "cycle-blocked" (cb) mutants of Chlamydomonas reinhardtii have been detected and isolated. These mutants exhibit normal vegetative growth at permissive temperature but are unable to complete a cell cycle (or a specified number of cell cycles) at restrictive temperature. A simple technique has been devised to determine the cell cycle stage in each mutant when the defective gene product, which ultimately affects cell division, completes its function. This stage is called the "block point", and is determined by scoring the residual cell division in an exponentially growing population after shift to temperature restrictive conditions. In the cb mutants isolated so far, block points representing many stages throughout the cell cycle have been found. Two categories of cb mutants are described here: one set which prevents the subsequent cell division when the cell encounters the block point after a shift to restrictive temperature, and another set which permits an additional round of cell division after the block point is encountered. The general applicability of block point analysis to other cell systems is presented.  相似文献   

13.
Conditional cell division mutants were isolated from Chlamydomonas reinhardii. They were unable to form colonies at 34 °C but not at 23 °C. One of the mutants, TS-60, could neither divide at high nor at low (15 °C) temperature, and seemed to continue protein synthesis at restrictive temperatures. TS-60 also exhibited resistance to 6 mM colchicine which inhibited cell division of the wild-type. Observing that TS-60 flagella were highly resistant to colchicine in their regeneration, it is concluded that the mutational alteration has affected not only the mitotic apparatus but also the flagella. Thermolability of TS-60 was not detected in flagellation but in cell division, though colchicine resistance was expressed in both flagellation and cell division. This suggests that the stable formation of the flagellar microtubule mainly depends on the specific organization of its component. Both thermolability and colchicine resistance of TS-60 were inherited in a Mendelian fashion and unseparable from each other. Reversion tests indicated that the two characters were caused by a single mutation. It is inferred that the above-mentioned phenotypes of TS-60 are the consequence of a mutation in factor(s) involving the colchicine binding activity of tubulin and that this mutational change pleiotrophically leads to some impediment in microtubule formation at restrictive temperature.  相似文献   

14.
We isolated six temperature-sensitive mutants of poliovirus type 1 (Mahoney) by hydroxylamine mutagenesis and replica plating at 31, 33 (permissive), and 39 degrees C (restrictive). One of these mutants, designated tsB9, was chosen for more detailed examination. tsB9 accumulated 25% of the wild-type amount of virus-specific RNA at the restrictive temperature. We found that tsB9 was not able to synthesize mature, 35S single-stranded RNA at the restrictive temperature. In spite of the absence of significant RNA synthesis, tsB9 retained the ability to inhibit host protein synthesis during infection at 39 degrees C at about the same rate as wild-type virus.  相似文献   

15.
Salmonella typhimurium cells infected by temperature-sensitive mutants in gene 9 of bacteriophage P22 at the restrictive temperature (39 °C) fail to accumulate functional tail spike protein. We report here studies of the inactive mutant tail spike polypeptide chains synthesized at 39 °C by temperature-sensitive mutants at 15 different sites of gene 9. For all 15 mutants, the gene 9 polypeptide chains were synthesized at 39 °C at rates similar to wild type. The mutant polypeptide chains were stable within the infected cells.The inactive polypeptide chains were tested for three functions displayed by the mature tail spike protein: irreversible binding to phage heads, endorhamnosidase activity, and reaction with anti-tail antibody. The 15 mutant proteins that accumulated at 39 °C lacked all three functions. Since the amino acid substitutions do not affect these functions of the mature protein, the mutant polypeptide chains synthesized at 39 °C have a conformation very different from the wild type, and different from the same proteins when matured at 30 °C. The fact that amino acid substitutions throughout the 76,000 Mr polypeptide chain prevent all three functions suggests that the mutations prevent the correct folding of the gene 9 polypeptide chain at restrictive temperature. Thus, these mutations identify sites in the polypeptide chain critical for protein maturation.Many of the mutant proteins could be activated in the absence of new protein synthesis by shifting infected cells from restrictive to permissive temperature before cell lysis. For these mutants, the immature chains accumulating at high temperature must be reversibly related to intermediates in protein folding or subunit assembly.  相似文献   

16.
Defective particles were the major product after undiluted passage of certain temperature-sensitive (ts) mutants of the Indiana C strain of vesicular stomatitis virus in BHK-21 cells at the permissive temperature (31 C). Essentially homogeneous preparations of defective particles were obtained with the wild-type and individual ts mutants. The defective particles associated with some of the ts mutants, however, were morphologically and physically distinguishable from wild type and from each other. All varieties of defective particle interfered with the multiplication of mutant and wild-type virus at the permissive temperature at early times of infection but failed to complement virions of different complementation groups at the restrictive temperature (39 C) at any time during infection.  相似文献   

17.
Temperature-sensitive mutants of simian virus 40 (SV40) have been classified as those that are blocked prior to viral DNA synthesis at the restrictive temperature, "early" mutants, and those harboring a defect later in the replication cycle, "late" mutants. Mutants of the A and D complementation groups are early, those of the B, C, and BC groups are late. Our results confirm earlier reports that A mutants are defective in a function required for the initiation of each round of viral DNA synthesis. D mutants, on the other hand, continue viral DNA replication at the restrictive temperature after preincubation at the permissive temperature. The length of time required for D function to be expressed at the permissive temperature-after which infection proceeds unabated on shifting of the cultures to the restrictive temperature-is 10 to 20 h. The viral DNA synthesized in D mutants under these conditions progresses in normal fashion through replicative intermediate molecules to mature component I and II DNA molecules.  相似文献   

18.
Three temperature-sensitive mutants of Arabidopsis thaliana that were defective in the redifferentiation of shoots were isolated as tools for the study of organogenesis. M3 lines were constructed by harvesting M3 seeds separately from each M2 plant. Comparative examination of shoot redifferentiation in root explants of 2700 M3 lines at 22[deg]C (permissive temperature) and at 27[deg]C (restrictive temperature) led to the identification of seven temperature-sensitive mutant lines. Genetic tests of three of the seven mutant lines indicated that temperature-sensitive redifferentiation of shoots in these three lines resulted from single, nuclear, recessive mutations in three different genes, designated SRD1, SRD2, and SRD3. The morphology of root explants of srd mutants cultured at the restrictive temperature suggests that the products of these SRD genes function at different stages of the redifferentiation of shoots.  相似文献   

19.
The ftsB gene of Escherichia coli is believed to be involved in cell division. In this report, we show that plasmids containing the nrdB gene could complement the ftsB mutation, suggesting that ftsB is an allele of nrdB. We compared changes in the cell shape of isogenic nrdA, nrdB, ftsB, and pbpB strains at permissive and restrictive temperatures. Although in rich medium all strains produced filaments at the restrictive temperature, in minimal medium only a 50 to 100% increase in mean cell mass occurred in the nrdA, nrdB, and ftsB strains. The typical pbpB cell division mutant also formed long filaments at low growth rates. Visualization of nucleoid structure by fluorescence microscopy demonstrated that nucleoid segregation was affected by nrdA, nrdB, and ftsB mutations at the restrictive temperature. Measurements of beta-galactosidase activity in lambda p(sfiA::lac) lysogenic nrdA, nrdB, and ftsB mutants in rich medium at the restrictive temperature showed that filamentation in the nrdA mutant was caused by sfiA (sulA) induction, while filamentation in nrdB and ftsB mutants was sfiA independent, suggesting an SOS-independent inhibition of cell division.  相似文献   

20.
Nineteen mutants that are conditional for both the ability to regain motility following deciliation and the ability to grow were isolated. The mutations causing slow growth were placed into five complementation groups. None of the mutations appears to affect energy production as all mutants remained motile at the restrictive temperature. In three complementation groups protein synthesis and the levels of mRNA encoding alpha-tubulin or actin were largely unaffected at the restrictive temperature, consistent with the hypothesis that mutations in these three groups directly affect the assembly of functional cilia and growth. Complementation group 1 was chosen for further characterization. Both phenotypes were shown to be linked, suggesting they are caused by a single mutation. Group 1 mutants regenerated cilia at the restrictive temperature, but the cilia were nonmotile. This mutation also caused a block in cytokinesis at the restrictive temperature but did not affect nuclear divisions or DNA synthesis. The block in cell division was transiently rescued by wild-type cytoplasm exchanged when mutants were paired with wild-type cells during conjugation (round 1 of genomic exclusion). Thus, at least one mutation has been isolated that affects assembly of some microtubule-based structures in Tetrahymena (cilia during regeneration) but not others (nuclei divide at 38 degrees), and the product of this gene is likely to play a role in both ciliary function and in cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号