首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The neural cell adhesion molecule (NCAM) is a member of the immunoglobulin superfamily. Two of the three major isoforms (NCAM 140 and NCAM 180) are transmembrane glycoproteins, which differ in their intracellular domains. The present study is concerned with the identification of novel intracellular binding partners of NCAM. We expressed and purified both cytoplasmic domains of NCAM. Using ligand affinity chromatography followed by peptide mass fingerprinting, we could identify several novel binding partners of the cytoplasmic domains of NCAM 140 and 180. We present data that alpha- and beta-tubulin as well as alpha-actinin 1 are associated with both NCAM 140 and 180. In contrast, beta-actin, tropomyosin, microtubuli-associated protein MAP 1A, and rhoA-binding kinase-alpha preferentially bind to NCAM 180. Furthermore, we demonstrate that inhibition of rhoA-binding kinase-alpha stimulates neurite outgrowth independently from NCAM.  相似文献   

2.
The cytoplasmic domain of the neural cell adhesion molecule (NCAM) contains multiple phosphorylation sites. We report here that in addition to serine and threonine residues a tyrosine of the NCAM180 isoform is phosphorylated as shown by phosphoamino acid analysis. Exchange of the only cytoplasmic tyrosine at position 734 of human NCAM180 (NCAM180-Y734F) to phenylalanine resulted in increased neurite outgrowth of NCAM180-Y734F transfected B35 neuroblastoma cells compared to NCAM180-wt transfectants on poly-L-lysine as substrate. As demonstrated by inhibitor studies the increased neurite outgrowth was due to higher FGF receptor 1 and ERK1 activity in NCAM180-Y734F cells, indicating that tyrosine residue 734 plays a role in signal transduction mediated by the FGF receptor. On an NCAM expressing monolayer of COS-7 cells the Y734F mutation also influences FGF receptor 1 dependent neurite outgrowth, but under these conditions additional mechanisms seem to be responsible for the increased neurite length observed for NCAM180-Y734F transfected cells.  相似文献   

3.
Recognition molecules and neurotrophins play important roles during development and maintenance of nervous system functions. In this study, we provide evidence that the neural cell adhesion molecule (NCAM) and the neurotrophin receptor TrkB directly interact via sequences in their intracellular domains. Stimulation of TrkB by brain-derived neurotrophic factor leads to tyrosine phosphorylation of NCAM at position 734. Mutation of this tyrosine to phenylalanine completely abolishes tyrosine phosphorylation of NCAM by TrkB. Moreover, the knockdown of TrkB in hippocampal neurons leads to a reduction of NCAM-induced neurite outgrowth. Transfection of NCAM-deficient hippocampal neurons with mutated NCAM carrying an exchange of tyrosine by phenylalanine at position 734 leads to promotion of NCAM-induced neurite outgrowth in comparison with that observed after transfection with wild-type NCAM, whereas a reduction of neurite outgrowth was observed after transfection with mutated NCAM, which carries an exchange of tyrosine by glutamate that mimics the phosphorylated tyrosine. Our observations indicate a functional relationship between TrkB and NCAM.  相似文献   

4.
Receptor protein tyrosine phosphatase α (RPTPα) phosphatase activity is required for intracellular signaling cascades that are activated in motile cells and growing neurites. Little is known, however, about mechanisms that coordinate RPTPα activity with cell behavior. We show that clustering of neural cell adhesion molecule (NCAM) at the cell surface is coupled to an increase in serine phosphorylation and phosphatase activity of RPTPα. NCAM associates with T- and L-type voltage-dependent Ca2+ channels, and NCAM clustering at the cell surface results in Ca2+ influx via these channels and activation of NCAM-associated calmodulin-dependent protein kinase IIα (CaMKIIα). Clustering of NCAM promotes its redistribution to lipid rafts and the formation of a NCAM–RPTPα–CaMKIIα complex, resulting in serine phosphorylation of RPTPα by CaMKIIα. Overexpression of RPTPα with mutated Ser180 and Ser204 interferes with NCAM-induced neurite outgrowth, which indicates that neurite extension depends on NCAM-induced up-regulation of RPTPα activity. Thus, we reveal a novel function for a cell adhesion molecule in coordination of cell behavior with intracellular phosphatase activity.  相似文献   

5.
A full-length cDNA encoding 180-kDa neural cell adhesion molecule (NCAM 180) has been transfected into mouse NIH-3T3 fibroblasts, and stable clones expressing the transgene have been isolated and characterised. Transfection was associated with the expression of a major protein band of 180 kDa and a minor related band of 140 kDa. Antibodies reactive exclusively with human NCAM immunoprecipitated both proteins but failed to coprecipitate any other proteins. The ability of transfected NCAM to stimulate neurite outgrowth was determined by culturing rat cerebellar neurons on top of confluent monolayers of parental 3T3 cells or clones of transfected 3T3 cells expressing either NCAM 140 or NCAM 180. The results show that NCAM 180 is less able to act as a substrate for neurite outgrowth than NCAM 140.  相似文献   

6.
The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28 , 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time a functional interaction between NCAM and EGFR in mammalian cells and investigates the molecular mechanisms underlying this interaction. First, NCAM and EGFR are shown to play opposite roles in neurite outgrowth regulation in cerebellar granular neurons. The data presented indicate that negative regulation of EGFR is one of the mechanisms underlying the neuritogenic effect of NCAM. Second, it is demonstrated that expression of the NCAM-180 isoform induces EGFR down-regulation in transfected cells and promotes EGFR down-regulation induced by EGF stimulation. It is demonstrated that the mechanism underlying this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does not require NCAM-mediated fibroblast growth factor receptor activation.  相似文献   

7.
In hippocampal neurons and transfected CHO cells, neural cell adhesion molecule (NCAM) 120, NCAM140, and NCAM180 form Triton X-100-insoluble complexes with betaI spectrin. Heteromeric spectrin (alphaIbetaI) binds to the intracellular domain of NCAM180, and isolated spectrin subunits bind to both NCAM180 and NCAM140, as does the betaI spectrin fragment encompassing second and third spectrin repeats (betaI2-3). In NCAM120-transfected cells, betaI spectrin is detectable predominantly in lipid rafts. Treatment of cells with methyl-beta-cyclodextrin disrupts the NCAM120-spectrin complex, implicating lipid rafts as a platform linking NCAM120 and spectrin. NCAM140/NCAM180-betaI spectrin complexes do not depend on raft integrity and are located both in rafts and raft-free membrane domains. PKCbeta2 forms detergent-insoluble complexes with NCAM140/NCAM180 and spectrin. Activation of NCAM enhances the formation of NCAM140/NCAM180-spectrin-PKCbeta2 complexes and results in their redistribution to lipid rafts. The complex is disrupted by the expression of dominant-negative betaI2-3, which impairs binding of spectrin to NCAM, implicating spectrin as the bridge between PKCbeta2 and NCAM140 or NCAM180. Redistribution of PKCbeta2 to NCAM-spectrin complexes is also blocked by a specific fibroblast growth factor receptor inhibitor. Furthermore, transfection with betaI2-3 inhibits NCAM-induced neurite outgrowth, showing that formation of the NCAM-spectrin-PKCbeta2 complex is necessary for NCAM-mediated neurite outgrowth.  相似文献   

8.
Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear. Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM activates FGFR signaling in a manner distinct from FGF2 stimulation, and regulates ShcA phosphorylation by the concerted efforts of the NCAM/FGFR as well as the NCAM/Fyn signaling pathway.  相似文献   

9.
The functions of the extracellular domains of neural cell adhesion molecule (NCAM) have been studied extensively, whereas the roles of the cytoplasmic domains of the transmembrane forms of NCAM are less elucidated. We investigated the importance of the cytoplasmic domain of the 140-kDa NCAM isoform (cytNCAM-140) and of the 180-kDa NCAM isoform (cytNCAM-180) in NCAM-induced neurite extension by estimating NCAM-dependent neurite outgrowth from PC12-E2 cells grown in coculture with NCAM-negative or NCAM-positive fibroblasts. PC12-E2 cells were transiently transfected with expression plasmids encoding cytNCAM-140, cytNCAM-180, the constitutively active form of the mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase kinase (MEK2), and the enhanced variant of the green fluorescent protein (EGFP). EGFP expression was used for identification of transfected cells. We found that expression of cytNCAM-180 had no effect on NCAM-stimulated neuritogenesis, whereas expression of cytNCAM-140 strongly inhibited this process. However, if MEK2 was expressed concomitantly with cytNCAM-140, neurite outgrowth was rescued, indicating that cytNCAM-140 is involved in signaling via the Ras-MAP kinase pathway. PC12-E2 cells were subsequently transiently transfected with constructs encoding a series of fragments of cytNCAM-140 and various full-length cytNCAM-140 mutants, and the residues Thr-Glu-Val-Lys-Thr (839-843) were identified as essential in NCAM-stimulated neuritogenesis. The combined substitution of Glu(840) and Lys(842) with Ala abrogated the effect of the construct, assigning a critical role to these two residues.  相似文献   

10.
11.
The Neural Cell Adhesion Molecule (NCAM) plays a crucial role in development of the central nervous system regulating cell migration, differentiation and synaptogenesis. NCAM mediates cell-cell adhesion through homophilic NCAM binding, subsequently resulting in activation of the fibroblast growth factor receptor (FGFR). NCAM-mediated adhesion leads to activation of various intracellular signal transduction pathways, including the Ras-mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K)-Akt pathways. A synthetic peptide derived from the second fibronectin type III module of NCAM, the FGL peptide, binds to and induces phosphorylation of FGFR without prior homophilic NCAM binding. We here present evidence that this peptide is able to mimic NCAM heterophilic binding to the FGFR by inducing neuronal differentiation as reflected by neurite outgrowth through a direct interaction with FGFR in primary cultures of three different neuronal cell types all expressing FGFR subtype 1: dopaminergic, hippocampal and cerebellar granule neurons. Moreover, we show that the FGL peptide promotes neuronal survival upon induction of cell death in the same three cell types. The effects of the FGL peptide are shown to depend on activation of FGFR and the MAPK and PI3K intracellular signalling pathways, all three kinases being necessary for the effects of FGL on neurite outgrowth and neuronal survival.  相似文献   

12.
The neural cell adhesion molecule (NCAM) has been reported to stimulate neuritogenesis either via nonreceptor tyrosine kinases or fibroblast growth factor (FGF) receptor. Here we show that lipid raft association of NCAM is crucial for activation of the nonreceptor tyrosine kinase pathway and induction of neurite outgrowth. Transfection of hippocampal neurons of NCAM-deficient mice revealed that of the three major NCAM isoforms only NCAM140 can act as a homophilic receptor that induces neurite outgrowth. Disruption of NCAM140 raft association either by mutation of NCAM140 palmitoylation sites or by lipid raft destruction attenuates activation of the tyrosine focal adhesion kinase and extracellular signal-regulated kinase 1/2, completely blocking neurite outgrowth. Likewise, NCAM-triggered neurite outgrowth is also completely blocked by a specific FGF receptor inhibitor, indicating that cosignaling via raft-associated kinases and FGF receptor is essential for neuritogenesis.  相似文献   

13.
The neural cell adhesion molecule (NCAM) promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). NCAM also has a little-understood ATPase activity. We here demonstrate for the first time a direct interaction between NCAM (fibronectin type III [F3] modules 1 and 2) and FGFR1 (Ig modules 2 and 3) by surface plasmon resonance (SPR) analysis. The structure of the NCAM F3 module 2 was determined by NMR and the module was shown by NMR to interact with the FGFR1 Ig module 3 and ATP. The NCAM sites binding to FGFR and ATP were found to overlap and ATP was shown by SPR to inhibit the NCAM-FGFR binding, indicating that ATP probably regulates the NCAM-FGFR interaction. Furthermore, we demonstrate that the NCAM module was able to induce activation (phosphorylation) of FGFR and to stimulate neurite outgrowth. In contrast, ATP inhibited neurite outgrowth induced by the module.  相似文献   

14.
The neural cell adhesion molecule (NCAM) has different isoforms due to different sizes in its polypeptide and plays a significant role in neural development. In neural development, the function of NCAM is modified by polysialylation catalyzed by two polysialyltransferases, ST8Sia II and ST8Sia IV. Previously, it was reported by others that ST8Sia II polysialylates only transmembrane isoforms of the NCAM, such as NCAM-140 and NCAM-180, but not NCAM-120 and NCAM-125 anchored by a glycosylphosphotidylinositol. In the present study, we first discovered that ST8Sia II polysialylates all isoforms of the NCAM examined, and we demonstrated that polysialylation of NCAM expressed on 3T3 cells facilitates neurite outgrowth regardless of isoforms of NCAM, where polysialic acid is attached. We then show that neurite outgrowth is significantly facilitated only when polysialylated NCAM is present in cell membranes. Moreover, the soluble NCAM coated on plates did not have an effect on neurite outgrowth exerted by soluble L1 adhesion molecule coated on plates. These results, taken together, indicate that ST8Sia II plays critical roles in modulating the function of all major isoforms of NCAM. The results also support previous studies showing that a signal cascade initiated by NCAM differs from that initiated by L1 molecule.  相似文献   

15.
The role of protein kinase C (PKC) isoforms in the neural cell adhesion molecule (NCAM)-mediated neurite outgrowth was tested using a co-culture system consisting of fibroblasts with or without NCAM expression upon which either primary cerebellar granular neurones (CGN) or pheochromocytoma (PC12-E2) cells were grown. The latter transiently expressed various PKC isoforms and domains derived from selected PKCs. PKC inhibitors of various specificity inhibited NCAM-stimulated neuritogenesis from CGN, indicating that PKC is involved in this process. Moreover, stimulation by the NCAM-mimetic peptide, C3d, elicited phosphorylation of PKC in CGN. Expression of kinase-deficient forms of PKCalpha, betaI and betaII blocked NCAM-mediated neurite extension, but had no effect on nerve growth factor (NGF)-mediated neurite outgrowth. Expression of two PKCepsilon constructs: (i) a fragment from PKCepsilon encompassing the pseudosubstrate, the C1a domain (including the actin-binding site, ABS), and parts of the V3 region, or (ii) the PKCepsilon-specific ABS blocked NCAM-mediated neurite extension in both cases. These two constructs also partially inhibited NGF-stimulated neuritogenesis indicating that PKCepsilon is a positive regulator of both NCAM- and NGF-mediated differentiation. We suggest that PKCepsilon is a common downstream mediator for several neuritogenic factors, whereas one or more conventional PKCs are specifically involved in NCAM-stimulated neurite outgrowth.  相似文献   

16.
GAP-43 regulates NCAM-180-mediated neurite outgrowth   总被引:6,自引:0,他引:6  
The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.  相似文献   

17.
Binding of the neural cell adhesion molecule (NCAM) in neurons to NCAM on non-neuronal cells can stimulate axonal growth. A developmentally regulated loss of this response is associated with the insertion of 10 amino acids (called VASE) into the fourth Ig domain in up to 50% of the NCAM receptors in neurons. In the present study we have transfected PC12 cells with the major neuronal isoforms of human NCAM and tested cells expressing these isoforms for their ability to respond to NCAM in a cellular substratum. Whereas both the 140- and 180-kD isoforms of NCAM can act as functional receptors for neurite outgrowth, the presence of the VASE sequence in a minority of the receptors specifically inhibited this response. A synthetic peptide containing the VASE sequence inhibits neurite outgrowth from PC12 cells and primary neurons stimulated by NCAM. The same peptide has no effect on integrin dependent neurite outgrowth or neurite outgrowth stimulated by N-cadherin or L1. We discuss the possibility that the VASE peptide inhibits the NCAM response by preventing NCAM from binding to the FGF receptor in the plasma membrane.  相似文献   

18.
Neural cell adhesion molecule (NCAM) contributes to axon growth and guidance during development and learning and memory in adulthood. Although the Ig domains mediate homophilic binding, outgrowth activity localizes to two membrane proximal fibronectin-like domains. The first of these contains a site identified as a potential FGF receptor (FGFR) activation motif (FRM) important for NCAM stimulation of neurite outgrowth, but its activity has hitherto remained hypothetical. Here, we have tested the effects of a domain-specific antibody and peptides corresponding to the FRM in cellular assays in vitro. The first fibronectin domain antibody inhibited NCAM-stimulated outgrowth, indicating the importance of the domain for NCAM function. Monomeric FRM peptide behaved as an inverse agonist; low concentrations specifically inhibited neurite outgrowth stimulated by NCAM and cellular responses to FGF2, while saturating concentrations stimulated FGFR-dependent neurite outgrowth equivalent to NCAM itself. Dendrimeric FRM peptide was 125-fold more active and stimulated FGFR activation, FGFR-dependent and FGF-mimetic neurite outgrowth and cell survival (but not proliferation). We conclude that the FRM peptide contains NCAM-mimetic bioactivity accounted for by stimulation of FGF signalling pathways at the level of or upstream from FGF receptors, and discuss the possibility that FRM comprises part of an FGFR activation site on NCAM.  相似文献   

19.
The cell adhesion molecules NCAM and L1 are considered to play key roles in neuronal development and plasticity. L1 has been shown to interact with NCAM, possibly through NCAM binding to oligomannosidic glycans present in L1. We investigated the effect of recombinant immunoglobulin (Ig) modules of NCAM involved in homophilic NCAM binding, on L1 induced neurite outgrowth from PC12-E2 cells and found a complete inhibition of L1 induced neurite outgrowth after addition of Ig-modules 1, 2 and 3 of NCAM, suggesting that the ligation state of NCAM is crucial for normal L1 signaling.  相似文献   

20.
The neural cell adhesion molecule (NCAM) forms a complex with p59fyn kinase and activates it via a mechanism that has remained unknown. We show that the NCAM140 isoform directly interacts with the intracellular domain of the receptor-like protein tyrosine phosphatase RPTPalpha, a known activator of p59fyn. Whereas this direct interaction is Ca2+ independent, formation of the complex is enhanced by Ca2+-dependent spectrin cytoskeleton-mediated cross-linking of NCAM and RPTPalpha in response to NCAM activation and is accompanied by redistribution of the complex to lipid rafts. Association between NCAM and p59fyn is lost in RPTPalpha-deficient brains and is disrupted by dominant-negative RPTPalpha mutants, demonstrating that RPTPalpha is a link between NCAM and p59fyn. NCAM-mediated p59fyn activation is abolished in RPTPalpha-deficient neurons, and disruption of the NCAM-p59fyn complex in RPTPalpha-deficient neurons or with dominant-negative RPTPalpha mutants blocks NCAM-dependent neurite outgrowth, implicating RPTPalpha as a major phosphatase involved in NCAM-mediated signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号