首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decreased expression of dopamine D2 receptors (D2R), dysfunction of inhibitory neurotransmission and impairments in the structure and connectivity of neurons in the medial prefrontal cortex (mPFC) are involved in the pathogenesis of schizophrenia and major depression, but the relationship between these changes remains unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, may serve as a link. This molecule is expressed in cortical interneurons and dopamine, via D2R, modulates its expression in parallel to that of proteins related to synapses and inhibitory neurotransmission, suggesting that D2R-targeted antipsychotics/antidepressants may act by affecting the plasticity of mPFC inhibitory circuits. To understand the role of PSA-NCAM in this plasticity, rats were chronically treated with a D2R agonist (PPHT) after cortical PSA depletion. PPHT-induced increases in GAD67 and synaptophysin (SYN) neuropil expression were blocked when PSA was previously removed, indicating a role for PSA-NCAM in this plasticity. The number of PSA-NCAM expressing interneuron somata also increased after PPHT treatment, but the percentages of these cells belonging to different interneuronal subpopulations did not change. Cortical pyramidal neurons did not express PSA-NCAM, but puncta co-expressing this molecule and parvalbumin could be found surrounding their somata. PPHT treatment increased the number of PSA-NCAM and parvalbumin expressing perisomatic puncta, but decreased the percentage of parvalbumin puncta that co-expressed SYN. PSA depletion did not block these effects on the perisomatic region, but increased further the number of parvalbumin expressing puncta and increased the percentage of puncta co-expressing SYN and parvalbumin, suggesting that the polysialylation of NCAM may regulate perisomatic inhibition of mPFC principal neurons. Summarizing, the present results indicate that dopamine acting on D2R influences structural plasticity of mPFC interneurons and point to PSA-NCAM as a key player in this remodeling.  相似文献   

2.
Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge) of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type–specific rules.  相似文献   

3.
The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM + cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM + neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”  相似文献   

4.
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that alpha-tocopherol increased the PSA-NCAM-positive granule cell number in adult rat DG, suggesting that alpha-tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under alpha-tocopherol supplementation conditions. PSA-NCAM expression was evaluated by Western blotting, evaluation of PSA-NCAM-positive granule cell density, and morphometric analysis of PSA-NCAM-positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA-NCAM expression has been found to be related to PKCdelta activity and alpha-tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA-NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in alpha-tocopherol-treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho-PKC Pan and phospho-PKCdelta, demonstrating that alpha-tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCdelta was lower in alpha-tocopherol-treated rats than in controls, while no changes were found in PKCdelta expression. These results demonstrate that alpha-tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCdelta inhibition.  相似文献   

5.
Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss.  相似文献   

6.
1. The adult hypothalamoneurohypophysial system (HNS) undergoes reversible morphological changes in response to physiological stimulation.2. In the hypothalamus, stimulation of neurohormone secretion results in reducedastrocytic coverage of oxytocinergic somata and dendrites so that their surfaces becomedirectly juxtaposed. Concurrently, there is a significant increase in the number of GABAergic, glutamatergic, and noradrenergic synapses impinging on the neurons.3. In the neurohypophysis, stimulation induces retraction of pituicyte processes fromthe perivascular area and enlargement and multiplication of neurosecretory terminals.4. These neuronal-glial and synaptic changes are reversible with cessation of stimulation, thus rendering the HNS an excellent model to study physiologically linked structuralneuronal plasticity in the adult CNS.5. We still do not know the cellular mechanisms and factors underlying such plasticity.Recent studies indicate, however, that the adult HNS expresses molecular characteristicsnormally associated with histogenesis and/or tissue reorganization in developing or regenerating neural systems. They include expression of cell adhesion molecules such as the highlysialylated isoform of the neural cell adhesion molecule, PSA-NCAM, and the glycoproteins, F3 and tenascin-C.6. The expression of PSA-NCAM and tenascin-C does not show striking differencesin terms of age, sex or physiological condition but that of F3 varies considerably withneurohypophysial stimulation.7. We postulate that such molecular features allow magnocellular neurons and theirglia to undergo neuronal-glial and synaptic plasticity throughout life, provided the properstimulus intervenes.8. Thus, in the hypothalamic nuclei, centrally released oxytocin acting in synergy with steroids can induce such plasticity, while adrenaline, acting through -adrenergic mechanisms, does so in the neurohypophysis.  相似文献   

7.
In the present study effect of dietary restriction (DR) on neuronal plasticity markers neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM and astrocytic marker glial fibrillary acidic protein (GFAP) was assessed following brain injury by intraperitoneal injection of kainic acid or physiological saline in adult male wistar rats. After 7-day recovery period, rats were sacrificed to study the NCAM-ir, PSA-NCAM-ir, and GFAP-ir in all the groups with immunohistofluorescence and immunoblotting. We noticed increase in NCAM and PSA-NCAM expression after KA excitotoxicity, and DR enhanced this increase in NCAM and PSA-NCAM expression. A marked increase in NCAM and PSA-NCAM-ir was observed in CA3 region of hippocampus, subgranular region and hilus of dentate gyrus, hypothalamus, and piriform cortex in both vehicle treated as well KA-treated DR rats as compared to vehicle and KA-treated AL rats, respectively. Whenever, CNS is damaged it undergoes an injury response called reactive gliosis. Our study confirmed the neuroprotective role of DR as evident from attenuation of GFAP-ir and enhanced levels of neuronal plasticity markers NCAM and PSA-NCAM. The potential beneficial role of DR regimen in attenuating KA-induced reactive astrogliosis and enhancing expression of neuronal plasticity markers may point the way to new strategies of intervention therapy by DR that will facilitate recovery from ageing and disease related neuronal dysfunction and enhance restorative processes by modulating astrogliosis.  相似文献   

8.
During developmental critical periods, external stimuli are crucial for information processing, acquisition of new functions or functional recovery after CNS damage. These phenomena depend on the capability of neurons to modify their functional properties and/or their connections, generally defined as "plasticity". Although plasticity decreases after the closure of critical periods, the adult CNS retains significant capabilities for structural remodelling and functional adaptation. At the molecular level, structural modifications of neural circuits depend on the balance between intrinsic growth properties of the involved neurons and growth-regulatory cues of the extracellular milieu. Interestingly, experience acts on this balance, so as to create permissive conditions for neuritic remodelling. Here, we present an overview of recent findings concerning the effects of experience on cellular and molecular processes responsible for producing structural plasticity of neural networks or functional recovery after an insult to the adult CNS (e.g. traumatic injury, ischemia or neurodegenerative disease). Understanding experience-dependent mechanisms is crucial for the development of tailored rehabilitative strategies, which can be exploited alone or in combination with specific therapeutic interventions to improve neural repair after damage.  相似文献   

9.
Many adult neurons are dynamically remodeled across timescales ranging from the rapid addition and removal of specific synaptic connections, to largescale structural plasticity events that reconfigure circuits over hours, days, and months. Membrane lipids, including brain-enriched sphingolipids, play crucial roles in these processes. In this review, we summarize progress at the intersection of neuronal activity, lipids, and structural remodeling. We highlight how brain activity modulates lipid metabolism to enable adaptive structural plasticity, and showcase glia as key players in membrane remodeling. These studies reveal that lipids act as critical signaling molecules that instruct the dynamic architecture of the brain.  相似文献   

10.
The adult hypothalamo-neurohypophysial system (HNS) undergoes activity-dependent morphological plasticity which modifies astrocytic coverage of its oxytocinergic neurons and their synaptic inputs. Thus, during physiological conditions that enhance central and peripheral release of oxytocin (OT), adjacent somata and dendrites of OT neurons become extensively juxtaposed, without intervening astrocytic processes and receive an increased number of synapses. The morphological changes occur within a few hours and are reversible with termination of stimulation. The reduced astrocytic coverage has direct functional consequences since it modifies extracellular ionic homeostasis, synaptic transmission, and the size and geometry of the extracellular space. It also contributes indirectly to neuronal function by permitting formation of synapses on neuronal surfaces freed of astrocytic processes. Overall, such remodeling is expected to potentiate activated neuronal firing, especially in clusters of tightly packed neurons, an anatomical arrangement characterizing OT neurons. This plasticity connotes dynamic cell interactions that must bring into play cell surface and extracellular matrix adhesive proteins like those intervening in developing neuronal systems undergoing neuronal-glial and synaptogenic transformations. It is worth noting, therefore, that adult HNS neurons and glia continue to express such molecules, including polysialic acid (PSA)-enriched neural cell adhesion molecule (PSA-NCAM) and the glycoprotein, tenascin-C. PSA is a large, complex sugar on the extracellular domain of NCAM considered a negative regulator of adhesion; it occurs in large amounts on the surfaces of HNS neurons and astrocytes. Tenascin-C, on the other hand, possesses adhesive and repulsive properties; it is secreted by HNS astrocytes and occurs in extracellular spaces and on cell surfaces after interaction with appropriate ligands. These molecules have been considered permissive factors for morphological plasticity. However, because of their localization and inherent properties, they may also serve to modulate the extracellular environment and in consequence, synaptic and volume transmission in a system in which the extracellular compartment is constantly being modified.  相似文献   

11.
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.  相似文献   

12.
Inhibition in the mammalian cerebral cortex is mediated by a small population of highly diverse GABAergic interneurons. These largely local neurons are interspersed among excitatory projection neurons and exert pivotal regulation on the formation and function of cortical circuits. We are beginning to understand the extent of GABAergic neuron diversity and how this is generated and shaped during brain development in mice and humans. In this review, we summarise recent findings and discuss how new technologies are being used to further advance our knowledge. Understanding how inhibitory neurons are generated in the embryo is an essential pre-requisite of stem cell therapy, an evolving area of research, aimed at correcting human disorders that result in inhibitory dysfunction.  相似文献   

13.
Revisiting the function of PSA-NCAM in the nervous system   总被引:7,自引:0,他引:7  
  相似文献   

14.
15.
Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here, we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied.  相似文献   

16.
The structure and function of neurons is dynamic during development and in adaptive responses of the adult nervous system to environmental demands. The mechanisms that regulate neuronal plasticity are poorly understood, but are believed to involve neurotransmitter and neurotrophic factor signaling pathways. In the present article, I review emerging evidence that mitochondria play important roles in regulating developmental and adult neuroplasticity. In neurons, mitochondria are located in axons, dendrites, growth cones and pre- and post-synaptic terminals where their movements and functions are regulated by local signals such as neurotrophic factors and calcium influx. Mitochondria play important roles in fundamental developmental processes including the establishment of axonal polarity and the regulation of neurite outgrowth, and are also involved in synaptic plasticity in the mature nervous system. Abnormalities in mitochondria are associated with neurodegenerative and psychiatric disorders, suggesting a therapeutic potential for approaches that target mitochondrial mechanisms. Special issue dedicated to John P. Blass.  相似文献   

17.
Notch is an integral membrane protein that functions as receptor for ligands such as jagged and delta that are associated with the surface of neighboring cells. Upon ligand binding, notch is proteolytically cleaved within its transmembrane domain by presenilin‐1 (the enzymatic component of the γ‐secretase complex) resulting in the release of a notch intracellular domain which translocates to the nucleus where it regulates gene expression. Notch signaling plays multiple roles in the development of the CNS including regulating neural stem cell (NSC) proliferation, survival, self‐renewal and differentiation. Notch is also present in post‐mitotic neurons in the adult CNS wherein its activation influences structural and functional plasticity including processes involved in learning and memory. Recent findings suggest that notch signaling in neurons, glia, and NSCs may be involved in pathological changes that occur in disorders such as stroke, Alzheimer’s disease and CNS tumors. Studies of animal models suggest the potential of agents that target notch signaling as therapeutic interventions for several different CNS disorders.  相似文献   

18.
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low‐affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin‐positive (PV) interneurons. Nrg3 and ErbB4 are located pre‐ and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo. Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short‐term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short‐term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non‐neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.  相似文献   

19.
Accumulating evidence indicate that structural synaptic plasticity in limbic areas plays a vital role not only in normal brain functions, such as cognition and mood, but also in the development of neurological and mental disorders. We have learned from studies investigating neuronal remodeling that estrogens have an exceptional synaptogenic potential that seems to be specific to limbic areas of the adult female brain. On the other hand, structural synaptic plasticity in the adult male brain and the synaptogenic effect of androgens received relatively little attention. During the last five years, the Leranth laboratory provided conclusive evidence that the hippocampus and prefrontal cortex of adult male rodents and non-human primates retain considerable structural synaptic plasticity similar to the female, and that androgens are capable of inducing spine synapse growth in both the hippocampus and prefrontal cortex similar to estrogens. Our recent work also demonstrates that androgen-induced remodeling of spine synapses in the prefrontal cortex of adult male rats is dependent, at least to some extent, on functional androgen receptors, while being entirely independent of the androgen receptor in the hippocampus. Based on these findings and on their many beneficial effects, we believe that androgens hold a great and undeservingly neglected therapeutic potential that could be employed to reverse synaptic pathology in various neurocognitive and neuropsychiatric disorders.  相似文献   

20.
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity and behavior, and its malfunction underlies many neurodevelopmental and psychiatric disorders. However, the molecular mechanisms that control dendritic spine morphogenesis have only recently emerged. We summarize recent work that has revealed an important connection between calcium/calmodulin-dependent kinases (CaMKs) and guanine-nucleotide-exchange factors (GEFs) that activate the small GTPase Rac (RacGEFs) in controlling dendritic spine morphogenesis. These two groups of molecules function in neurons as a unique signaling cassette that transduces calcium influx into small GTPase activity and, thence, actin reorganization and spine morphogenesis. Through this pathway, CaMKs and RacGEFs amplify calcium signals and translate them into spatially and temporally regulated structural remodeling of dendritic spines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号