首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas putida strains carrying the plasmid alk genes will grow on n-alkanes. Induced alk+ strains contain membrane activities for alkane hydroxylation and dehydrogenation of aliphatic primary alcohols. P. putida cytoplasmic and outer membranes can be separated by sucrose gradient centrifugation after disruption of cells by either mild detergent lysis or passage through a French press. Both the membrane component of alkane hydroxylase and membrane alcohol dehydrogenase fractionated with the cytoplasmic membrane. Induction of the alk regulon resulted in the appearance of at least three new plasmid-determined cytoplasmic membrane peptides of about 59,000 (59K), 47,000 (47K), and 40,000 (40K) daltons as well as the disappearance of a pair of chromosomally encoded outer membrane peptides of about 43,000 daltons. The 40K peptide is the membrane component of alkane hydroxylase and the product of the plasmid alkB gene because the alkB1029 mutation altered the properties of alkane hydroxylase in whole cells, reduced its thermal stability in cell extracts, and led to increased electrophoretic mobility of the inducible 40K peptide. These results are consistent with a model for vectorial oxidation of n-alkanes in the cytoplasmic membrane of P. putida.  相似文献   

2.
Screening of alkane hydroxylase genes (alkB) was performed in the thermophilic aerobic bacteria of the genus Geobacillus. Total DNA was extracted from the biomass of 11 strains grown on the mixture of saturated C10-C20 hydrocarbons, PCR amplification of fragments of alkB genes was performed with degenerate oligonucleotide primers, PCR products were cloned and sequenced. For the first time in the genome of thermophilic bacteria the presence of a set of alkB gene homologues was revealed. The strains each contain three to six homologues among which only two are universal for all of the strains. Comparative phylogenetic analysis of the nucleotide sequences and the inferred amino acid sequences showed close relatedness of six of the revealed variants of geobacilli sequences to the alkB4, alkB3, and alkB2 genes that had previously been revealed by other authors in Rhodococcus erythropolis strains NRRL B-16531 and Q15. The rest two variants of alkB sequences were unique. Analysis of the GC composition of all the Geobacillus alkB homologues revealed closer proximity to the rhodococcal chromosomal DNA than to the chromosomal DNA of geobacilli. This may be an indication of the introduction of the alkB genes into the Geobacillus genome by interspecies horizontal transfer; and rhodococci or other representatives of the Actinobacteria phylum were probably the donors of these genes. Analysis of the codon usage in fragments of alkB genes confirms the suggestion that the pool of these genes is common to the majority of Gram-positive and certain Gram-negative bacteria. Formation of a set of several alkB homologues in a genome of a particular microorganism may result from free gene exchange within this pool.  相似文献   

3.
We screened a Thermotoga sp. strain RQ2 lambda library for genes present in that strain but absent from the closely related completely sequenced relative Thermotoga maritima strain MSB8, by using probes generated in an earlier genomic subtraction study. Five lambda insert fragments were sequenced, containing, respectively, an archaeal type ATPase operon, rhamnose biosynthetic genes, ORFs with similarity to an arabinosidase, a Thermotoga sp. strain RQ2-specific alcohol dehydrogenase and a novel archaeal Mut-S homologue. All but one of these fragments contained additional Thermotoga sp. strain RQ2-specific sequences not screened for, suggesting that many such strain-specific genes will be found clustered in the genome. Moreover, phylogenetic analyses, phylogenetic distribution and/or G + C content suggests that all the Thermotoga sp. strain RQ2 specific sequences in the sequenced lambda clones have been acquired by lateral gene transfer. We suggest that the use of strain-specific small insert clones obtained by subtractive hybridization to target larger inserts for sequencing is an efficient, economical way to identify environmentally (or clinically) relevant interstrain differences and novel gene clusters, and will be invaluable in comparative genomics.  相似文献   

4.
AIMS: A molecular tool for extensive detection of prokaryotic alkane hydroxylase genes (alkB) was developed. AlkB genotypes involved in the degradation of short-chain alkanes were quantified in environmental samples in order to assess their occurrence and ecological importance. METHODS AND RESULTS: Four primer pairs specific for distinct clusters of alkane hydroxylase genes were designed, allowing amplification of alkB-related genes from all tested alkane-degrading strains and from six of seven microcosms. For the primer pair detecting alkB genes related to the Pseudomonas putida GPo1 alkB gene and the one targeting alkB genes of Gram-positive strains, both involved in short-chain alkane degradation (相似文献   

5.
6.
7.
Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield.  相似文献   

8.
The plasmid-determined inducible alkane hydroxylase of Pseudomonas putida resolved into particulate and soluble fractions. Spinach reductase and spinach ferredoxin could replace the soluble hydroxylase component. Two alkane hydroxylase mutants show in vitro complementation (S. Benson and J. Shapiro, J. Bacteriol., 123: 759-760, 1975): one, alk-7, lacks an active soluble component and the other, alk-181, lacks an active particulate component. Together with previous results on a particulate alcohol dehydrogenase enzyme (Benson and Shapiro, J. Bacteriol., 126: 794-798, 1976), these results allowed us to assay three plasmid-determined inducible activities: soluble alkane hydroxylase (alkA+), particulate alkane hydroxylase (alkB+), and particulate alcohol dehydrogenase (alkC+). Growth tests and in vitro complementation assays revealed three groups of plasmid mutations that block expression of alkane hydroxylase activity: alkA, which so far includes only the alk-7 mutation; alkB, which includes alk-181 and 11 other mutations; and a pleiotropic-negative class, which includes nine mutations that lead to loss of alkA+, alkB+, and alkC+ activities. Thus, the alk+ gene cluster found on IncP-2 plasmids contains at least four cistrons. We believe it is significant that two of these determined the presence of membrane proteins. The accompanying paper shows that these loci are part of a single regulon.  相似文献   

9.
The Pacific Nodule Province is a unique ocean area containing an abundance of polymetallic nodules. To explore more genetic information and discover potentially industrial useful genes of the microbial community from this particular area, a cosmid library with an average insert of about 35 kb was constructed from the deep-sea sediment. The bacteria in the cosmid library were composed mainly of Proteobacteria including Alphaproteobacteria, Gammaproteobacteria and Deltaproteobacteria. The end sequences of some cosmid clones were determined and the complete insert sequences of two cosmid clones, 10D02 and 17H9, are presented. 10D02 has a length of 40.8 kb and contains 40 predicted encoding genes. It contains a partial 16S rRNA gene of Alphaproteobacteria. 17H9 is 36.8 kb and predicted to have 31 encoding genes and a 16S-23S-5S rRNA gene operon. Phylogenetic analysis of 16S and 23S rRNA gene sequence on the 17H9 both reveals that the inserted DNA from 17H9 came from a novel Alphaproteobacteria and is closely related to Magnetospirillum species. The predicted proteins of ORF 1-11 also have high identity to those of Magnetospirillum species, and the organization of these genes is highly conserved among known Magnetospirillum species. The data suggest that the retrieved DNA in 17H9 might be derived from a novel Magnetospirillum species.  相似文献   

10.
11.
Five cDNA clones designated pDH2, pDH8, pDH9, pDH31 and pDH101 encoding rabbit immunoglobulin lambda light chain sequences have been characterized. Comparison of the V lambda sequences suggests that, in addition to an increased divergence in all of the complementarity-determining regions (CDRs), variable-region diversity is amplified by the length heterogeneity of the CDR3, at the V lambda-J lambda junction. An insertion of four codons at positions 48a-d has been noted in three cDNA sequences. This insert, not found in lambda nor kappa light chains of other species, has a variable sequence, suggesting its possible implication in expanding variability of the CDR2. One of the cDNA clones was shown to encode a novel C lambda region which differs by four amino acid substitutions from the C lambda region common to all the other clones. Thus, the rabbit can use two different C lambda genes, which might correlate with the expression of the two known allotypes of lambda chains, C7 and C21. Southern blotting experiments indicate a small number of germ-line V lambda genes and the cDNA nucleotide sequence data reported here suggest that several of these genes can be expressed. The possibility of at least two V-J-C gene clusters is discussed.  相似文献   

12.
We have developed Escherichia coli and Pseudomonas expression vectors based on the alkane-responsive Pseudomonas putida (oleovorans) GPo1 promoter PalkB. The expression vectors were tested in several E. coli strains, P. putida GPo12 and P. fluorescens KOB2Delta1 with catechol-2,3-dioxygenase (XylE). Induction factors ranged between 100 and 2700 for pKKPalk in E. coli and pCom8 in Pseudomonas strains, but were clearly lower for pCom8, pCom9, and pCom10 in E. coli. XylE expression levels of more than 10% of total cell protein were obtained for E. coli as well as for Pseudomonas strains.  相似文献   

13.
Abstract The 2,3-butanediol dehydrogenase and the acetoin-cleaving system were simultaneously induced in Pseudomonas putida PpG2 during growth on 2,3-butanediol and on acetoin. Hybridization with a DNA probe covering the genes for the E1 subunits of the Alcaligenes eutrophus acetoin cleaving system and nucleotide sequence analysis identified acoA (975 bp), acoB (1020 bp), acoC (1110 bp), acoX (1053 bp) and adh (1086 bp) in a 6.3-kb genomic region. The amino acid sequences deduced from acoA , acoB , and acoC for E1α ( M r 34639), E1β ( M r 37268), and E2 ( M r 39613) of the P. putida acetoin cleaving system exhibited striking similarities to those of the corresponding components of the A. eutrophus acetoin cleaving system and of the acetoin dehydrogenase enzyme system of Pelobacter carbinolicus and other bacteria. Strong sequence similarities of the adh translational product (2,3-butanediol dehydrogenase, M r 38361) were obtained to various alcohol dehydrogenases belonging to the zinc- and NAD(P)-dependent long-chain (group I) alcohol dehydrogenases. Expression of the P. putida ADH in Escherichia coli was demonstrated. The aco genes and adh constitute presumably one single operon which encodes all enzymes required for the conversion of 2,3-butanediol to central metabolites.  相似文献   

14.
15.
The alkBFGHJKL and alkST operons encode enzymes that allow Pseudomonas putida (oleovorans) to metabolize alkanes. In this paper we report the nucleotide sequence of a 4592 bp region of the alkBFGHJKL operon encoding the AlkJ, AlkK and AlkL polypeptides. The alkJ gene encodes a protein of 59 kilodaltons. The predicted amino acid sequence shows significant homology with four flavin proteins: choline dehydrogenase, a glucose dehydrogenase and two oxidases. AlkJ is membrane-bound and converts aliphatic medium-chain-length alcohols into aldehydes. The properties of AlkJ suggest that it is linked to the electron transfer chain. AlkJ is necessary for growth on alkanes only in P. putida alcohol dehydrogenase (AlcA) mutants. AlkK is homologous to a range of proteins which act by an ATP-dependent covalent binding of AMP to their substrate. This list includes the acetate, coumarate and long-chain fatty acid CoA ligases. The alkK gene complements a fadD mutation in Escherichia coli, which shows that it indeed encodes an acyl-CoA synthetase. AlkK is a 60 kilodalton protein located in the cytoplasm. AlkL is homologous to OmpW, a Vibrio cholerae outer membrane protein of unknown function, and a hypothetical polypeptide encoded by ytt4 in E. coli. AlkL, OmpW and Ytt4 all have a signal peptide and end with a sequence characteristic of outer membrane proteins. The alkL gene product was found in the outer membrane of E. coli W3110 containing the alk-genes. The alkL gene can be deleted without a clear effect on growth rate. Its function remains unknown. The G+C content of the alkJKL genes is 45%, identical to that of the alkBFGH genes, and significantly lower than the G+C content of the OCT-plasmid and the P. putida chromosome.  相似文献   

16.
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).  相似文献   

17.
Cultures of the newly isolated bacterial strains AD20, AD25, and AD27, identified as strains of Ancylobacter aquaticus, were capable of growth on 1,2-dichloroethane (DCE) as the sole carbon and energy source. These strains, as well as two other new DCE utilizers, were facultative methylotrophs and were also able to grow on 2-chloroethanol, chloroacetate, and 2-chloropropionate. In all strains tested, DCE was degraded by initial hydrolytic dehalogenation to 2-chloroethanol, followed by oxidation by a phenazine methosulfate-dependent alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase. The resulting chloroacetic acid was converted to glycolate by chloroacetate dehalogenase. The alcohol dehydrogenase was induced during growth on methanol or DCE in strain AD20, but no activity was found during growth on glucose. However, in strain AD25 the enzyme was synthesized to a higher level during growth on glucose than on methanol, and it reached levels of around 2 U/mg of protein in late-exponential-phase cultures growing on glucose. The haloalkane dehalogenase was constitutively produced in all strains tested, but strain AD25 synthesized the enzyme at a level of 30 to 40% of the total cellular protein, which is much higher than that found in other DCE degraders. The nucleotide sequences of the haloalkane dehalogenase (dhlA) genes of strains AD20 and AD25 were the same as the sequence of dhlA from Xanthobacter autotrophicus GJ10 and GJ11. Hybridization experiments showed that the dhlA genes of six different DCE utilizers were all located on an 8.3-kb EcoRI restriction fragment, indicating that the organisms may have obtained the dhlA gene by horizontal gene transmission.  相似文献   

18.
Cultures of the newly isolated bacterial strains AD20, AD25, and AD27, identified as strains of Ancylobacter aquaticus, were capable of growth on 1,2-dichloroethane (DCE) as the sole carbon and energy source. These strains, as well as two other new DCE utilizers, were facultative methylotrophs and were also able to grow on 2-chloroethanol, chloroacetate, and 2-chloropropionate. In all strains tested, DCE was degraded by initial hydrolytic dehalogenation to 2-chloroethanol, followed by oxidation by a phenazine methosulfate-dependent alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase. The resulting chloroacetic acid was converted to glycolate by chloroacetate dehalogenase. The alcohol dehydrogenase was induced during growth on methanol or DCE in strain AD20, but no activity was found during growth on glucose. However, in strain AD25 the enzyme was synthesized to a higher level during growth on glucose than on methanol, and it reached levels of around 2 U/mg of protein in late-exponential-phase cultures growing on glucose. The haloalkane dehalogenase was constitutively produced in all strains tested, but strain AD25 synthesized the enzyme at a level of 30 to 40% of the total cellular protein, which is much higher than that found in other DCE degraders. The nucleotide sequences of the haloalkane dehalogenase (dhlA) genes of strains AD20 and AD25 were the same as the sequence of dhlA from Xanthobacter autotrophicus GJ10 and GJ11. Hybridization experiments showed that the dhlA genes of six different DCE utilizers were all located on an 8.3-kb EcoRI restriction fragment, indicating that the organisms may have obtained the dhlA gene by horizontal gene transmission.  相似文献   

19.
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).  相似文献   

20.
假单胞菌海因酶基因在大肠杆菌中的高效表达(英文)   总被引:3,自引:3,他引:3  
为实现利用生物酶转化法进行D 对羟基苯甘氨酸的工业化生产 ,构建了 3株海因酶基因工程菌 .利用PCR技术从恶臭假单胞菌 (Pseudomonasputida)CPU 980 1染色体DNA中扩增得到长约1.8kb的含编码区和自身启动子的海因酶全基因 .通过将海因酶全基因插入pMD18 T质粒、海因酶基因的编码区与pET 17 b质粒重组、海因酶基因编码区和T7强启动子一起插入pMD18 T质粒分别得到重组质粒pMD dht、pET dht和pMD T7 dht.将上述重组质粒分别转化大肠杆菌 (Escherichiacoli) ,通过地高辛标记菌落原位杂交和海因酶活力测定两种方法 ,筛选出具有海因酶活力的阳性转化子 .结果表明 ,大肠杆菌的RNA聚合酶能够识别和结合来自恶臭假单胞菌海因酶基因的自身启动子 ,该启动子在大肠杆菌中能够工作 .基因工程菌E .coliBL2 1 pMD dht、E .coliBL2 1 pET dht和E .coliBL2 1 pMD T7 dht的海因酶活力分别为 170 0U L、190 0U L和 2 5 0 0U L ,比野生菌P .putidaCPU 980 1的海因酶活力分别提高了 8倍、9倍和 12倍 .薄层扫描结果显示 ,这些工程菌的海因酶表达量分别约占菌体总可溶性蛋白质的 2 0 %、31%和 5 7%.SDS PAGE显示 ,海因酶的单体分子量约为 5 0kD .经工程菌E .coliBL2 1 pMD T7 dht催化 ,底物对羟基苯海因的转化率在 13h内可达到 9  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号