首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although replication-incompetent recombinant adenovirus (rAd) type 5 is a potent vaccine vector for stimulating T and B cell responses, high seroprevalence of adenovirus type 5 (Ad5) within human populations may limit its clinical utility. Therefore, alternative adenovirus serotypes have been studied as vaccine vectors. In this study, we characterized the ability of rAd5 and rAd35 to infect and induce maturation of human CD11c(+) myeloid dendritic cells (MDCs) and CD123(+) plasmacytoid dendritic cells (PDCs), and their ability to stimulate Ag-specific T cells. Both MDCs and PDCs were found to express the primary receptor for Ad35 (CD46) but not Ad5 (coxsackie-adenovirus receptor; CAR). Both dendritic cell (DC) subsets were also more susceptible to rAd35 than to rAd5. MDCs were more susceptible to both rAd35 and rAd5 than were PDCs. Whereas rAd35 used CD46 for entry into DCs, entry of rAd5 may be through a CAR-independent pathway. Exposure to rAd35 but not rAd5 induced high levels of IFN-alpha in PDCs and phenotypic differentiation in both DC subsets. MDCs and PDCs exposed to either rAd5 or rAd35 encoding for CMV pp65 were able to present pp65 and activate CMV-specific memory CD8(+) and CD4(+) T cells in a dose-dependent manner, but MDCs stimulated the highest frequencies of pp65-specific T cells. Responding T cells expressed multiple functions including degranulation (CD107a surface mobilization) and production of IFN-gamma, IL-2, TNF-alpha, and MIP-1beta. Thus, the ability of rAd35 to naturally target important DC subsets, induce their maturation, and appropriately present Ag to T cells may herald greater in vivo immunogenicity than has been observed with rAd5.  相似文献   

2.
BACKGROUND: A paucity of coxsackie adenovirus receptor (CAR) hampers the adenovirus serotype 5 (Ad5)-based vector-mediated gene transfer into malignant hematopoietic cells. Fiber-retargeted adenoviral vectors with species B tropism can potentially bypass the CAR requirement and facilitate efficient gene transfer into malignant hematopoietic cells. METHODS: For feasible generation of fiber-retargeted adenoviral vectors, we have modified the versatile AdEasy system with a chimeric fiber gene encoding the Ad5 fiber tail domain and Ad35 fiber shaft and knob domains. An Ad5-based vector encoding the green fluorescent protein (GFP) gene under the control of the PGK promoter with Ad35 fiber receptor specificity was generated (Ad5F35-GFP). The Ad5F35-GFP vector-mediated gene transfer efficiency was compared with a fiber non-modified Ad5-GFP vector, which also encodes the GFP gene under the control of the PGK promoter. RESULTS: We demonstrated that a variety of Ad5-refractory malignant myeloid and B lymphoid cell lines were highly permissive to the Ad5F35-GFP vector infection. Importantly, primary chronic myeloid leukemic (CML) cells and chronic lymphocytic leukemia (CLL) B cells were superiorly transduced by the Ad5F35-GFP vector at a multiplicity of infection (MOI) of 100 compared with the Ad5-GFP vector. CONCLUSIONS: Our study will facilitate the generation of fiber-retargeted adenoviral vectors and enable transient genetic manipulation of primary malignant hematopoietic cells.  相似文献   

3.
We investigated the mechanism of adenovirus serotype 5 (Ad5)-mediated maturation of bone marrow-derived murine dendritic cells (DC) using (i) Ad5 vectors with wild-type capsid (AdE1 degrees, AdGFP); (ii) Ad5 vector mutant deleted of the fiber C-terminal knob domain (AdGFPDeltaknob); and (iii) capsid components isolated from Ad5-infected cells or expressed as recombinant proteins, hexon, penton, penton base, full-length fiber, fiber knob, and fiber mutants. We found that penton capsomer (penton base linked to its fiber projection), full-length fiber protein, and its isolated knob domain were all capable of inducing DC maturation, whereas no significant DC maturation was observed for hexon or penton base alone. This capacity was severely reduced for AdGFPDeltaknob and for fiber protein deletion mutants lacking the beta-stranded region F of the knob (residues Leu-485-Thr-486). The DC maturation effect was fully retained in a recombinant fiber protein deleted of the HI loop (FiDeltaHI), a fiber (Fi) deletion mutant that failed to trimerize, suggesting that the fiber knob-mediated DC activation did not depend on the integrity of the HI loop and on the trimeric status of the fiber. Interestingly, peptide-pulsed DC that had been stimulated with Ad5 knob protein induced a potent CD8+ T cell response in vivo.  相似文献   

4.
Recombinant adenoviral (rAd) vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5) vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs) was independent of the coxsackievirus and adenovirus receptor (CAR), its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.  相似文献   

5.
Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.  相似文献   

6.
Recombinant adenovirus (Ad) type 35 (rAd35) shows great promise as vaccine carrier with the advantage of low pre-existing immunity in human populations, in contrast to the more commonly used rAd5 vector. The rAd35 vector uses CD46 as a high-affinity receptor, which, unlike the rAd5 receptor, is expressed on human dendritic cells (DC), the most powerful APCs identified to date. In this study, we show that in contrast to rAd5, rAd35 infects migrated and mature CD83+ cutaneous DC with high efficiency (up to 80%), when delivered intradermally in an established human skin explant model. The high transduction efficiency is in line with high expression levels of CD46 detected on migratory cutaneous DC, which proved to be further increased upon intradermal administration of GM-CSF and IL-4. As compared with Ad5, these Ad35 infection characteristics translate into higher absolute numbers of skin-emigrated DC per explant that both express the transgene and are phenotypically mature. Finally, we demonstrate that upon intracutaneous delivery of a rAd35 vaccine encoding the circumsporozoite (CS) protein of Plasmodium falciparum, emigrated DC functionally express and process CS-derived epitopes and are capable of activating specific CD8+ effector T cells, as evidenced by activation of an HLA-A2-restricted CS-specific CD8+ T cell clone. Collectively, these data demonstrate the utility of rAd35 vectors for efficient in vivo human DC transduction.  相似文献   

7.
Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes.  相似文献   

8.
Mizuguchi H  Hayakawa T 《Gene》2002,285(1-2):69-77
Adenovirus (Ad) fiber proteins are responsible for the initial attachment of the virion to the cell membrane. Most Ad vectors currently in use are based on the Ad type 5 (Ad5), which belong to subgroup C, and use the coxsackievirus and adenovirus receptors (CAR) as the initial receptor. Ad35, which belongs to subgroup B, recognizes unknown receptor(s) other than CAR. In this study, the feasibility of the Ad vector containing Ad5/35 chimeric fiber protein was examined in a wide variety of cell types, such as CAR-positive or -negative human tumor cells, rodent cells, and blood cells (a total of 20 cell types), and in mice in vivo. Transduction data suggested that the Ad vectors containing the Ad5/35 chimeric fiber protein exhibited altered and expanded tropism when compared with the Ad5-based vector. The chimeric vector also allows the packaging of larger foreign DNAs than the conventional Ad5-based vector, which can package approximately 8.1-8.2 kb of foreign DNA. The chimeric vector containing approximately 8.8 kb of foreign DNA was generated without affecting the viral growth rate and titer. These results suggested that inclusion of the Ad35 fiber protein into the Ad5-based vector could lead to an improved efficiency in gene therapy and in gene transfer experiments, especially for the cells lacking in sufficient CAR expression.  相似文献   

9.
Previously, we compared the efficiency of direct injection with an adenovirus (Ad) expressing human gp100 (hgp100) to immunization with dendritic cells (DC) loaded with the same vector ex vivo. The DC vaccine provided the greatest protection against challenge with B16F10 melanoma, and antitumor immunity was found to be CD8(+) T cell-independent. In the current study, we sought to determine whether lack of CD8(+) T cell-mediated antitumor immunity was a function of the vaccine platform or the tumor line. Both Ad and DC/Ad vaccines elicited CD8(+) CTL reactive against hgp100 and provided protection against B16F10 engineered to express hgp100 demonstrating that both vaccination platforms can effectively generate protective CD8(+) T cell-mediated immunity. The hgp100-induced CTL cross-reacted with murine gp100 (mgp100) and lysed B16F10 cells pulsed with mgp100 peptide indicating that the resistance of B16F10 cells to CTL elicited by hgp100 vaccination may be due to a defect in processing of the endogenous mgp100. Indeed, introduction of the TAP-1 cDNA into B16F10 rendered the cells sensitive to lysis by gp100-specific CTL. Furthermore, gp100-immunized mice were protected from challenge with B16F10-TAP1 cells through a mechanism dependent upon CD8(+) T cells. These results demonstrate that tumor phenotype, not the vaccination platform, ultimately determines CD8(+) or CD4(+) T cell-mediated tumor clearance.  相似文献   

10.
Altering adenovirus vector (Ad vector) targeting is an important goal for a variety of gene therapy applications and involves eliminating or reducing the normal tropism of a vector and retargeting through a distinct receptor-ligand pathway. The first step of Ad vector infection is high-affinity binding to a target cellular receptor. For the majority of adenoviruses and Ad vectors, the fiber capsid protein serves this purpose, binding to the coxsackievirus and adenovirus receptor (CAR) present on a variety of cell types. In this study we have explored a novel approach to altering Ad type 5 (Ad5) vector targeting based on serotypic differences in fiber function. The subgroup B viruses bind to an unidentified receptor that is distinct from CAR. The subgroup F viruses are the only adenoviruses that express two distinct terminal exons encoding fiber open reading frames. We have constructed chimeric fiber adenoviruses that utilize the tandem fiber arrangement of the subgroup F genome configuration. By taking advantage of serotypic differences in fiber expression, fiber shaft length, and fiber binding efficiency, we have developed a tandem fiber vector that has low binding efficiency for the known fiber binding sites, does not rely on an Ad5-based fiber, and can be grown to high titer using conventional cell lines. Importantly, when characterizing these vectors in vivo, we find the subgroup B system and our optimal tandem fiber system demonstrate reduced liver transduction by over 2 logs compared to an Ad5 fiber vector. These attributes make the tandem fiber vector a useful alternative to conventional strategies for fiber manipulation of adenovirus vectors.  相似文献   

11.
Replication-deficient recombinant adenovirus (Ad) encoding human gp100 or MART-1 melanoma Ag was used to transduce human dendritic cells (DC) ex vivo as a model system for cancer vaccine therapy. A second generation E1/E4 region deleted Ad which harbors the CMV immediate-early promoter/enhancer and a unique E4-ORF6/pIX chimeric gene was employed as the backbone vector. We demonstrate that human monocyte-derived DC are permissive to Ad infection at multiplicity of infection between 100 and 500 and occurs independent of the coxsackie Ad receptor. Fluorescent-labeled Ad was used to assess the kinetics and distribution of viral vector within DC. Ad-transduced DC show peak transgene expression at 24-48 h and expression remains detectable for at least 7 days. DC transduced with replication-deficient Ad do not exhibit any unusual phenotypic characteristics or cytopathic effects. DC transduced with Ad2/gp100v2 can elicit tumor-specific CTL in vitro from patients bearing gp100+ metastatic melanoma. Using a panel of gp100-derived synthetic peptides, we show that Ad2/gp100v2-transduced DC elicit Ag-specific CTL that recognize only the G209 and G280 epitopes, both of which display relatively short half-lives ( approximately 7-8 h) on the surface of HLA-A*0201+ cells. Thus, patients with metastatic melanoma are not tolerant to gp100 Ag based on the detection of CD8+ T cells specific for multiple HLA-A*0201-restricted, gp100-derived epitopes.  相似文献   

12.
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines.  相似文献   

13.
Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and alpha(v) integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34(+) cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34(+) cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an alpha(v) integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34(+) cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34(+) cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34(+) cells expressing alpha(v) integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34(+) cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34(+) cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34(+) c-Kit(+) cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34(+) c-Kit(+) cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells.  相似文献   

14.
The high prevalence of pre-existing immunity to adenovirus serotype 5 (Ad5) in human populations may substantially limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for HIV-1 and other pathogens. A potential solution to this problem is to use vaccine vectors derived from adenovirus (Ad) serotypes that are rare in humans, such as Ad35. However, cross-reactive immune responses between heterologous Ad serotypes have been described and could prove a major limitation of this strategy. In particular, the extent of immunologic cross-reactivity between Ad5 and Ad35 has not previously been determined. In this study we investigate the impact of pre-existing anti-Ad5 immunity on the immunogenicity of candidate rAd5 and rAd35 vaccines expressing SIV Gag in mice. Anti-Ad5 immunity at levels typically found in humans dramatically blunted the immunogenicity of rAd5-Gag. In contrast, even high levels of anti-Ad5 immunity did not substantially suppress Gag-specific cellular immune responses elicited by rAd35-Gag. Low levels of cross-reactive Ad5/Ad35-specific CD4(+) T lymphocyte responses were observed, but were insufficient to suppress vaccine immunogenicity. These data demonstrate the potential utility of Ad35 as a candidate vaccine vector that is minimally suppressed by anti-Ad5 immunity. Moreover, these studies suggest that using Ad vectors derived from immunologically distinct serotypes may be an effective and general strategy to overcome the suppressive effects of pre-existing anti-Ad immunity.  相似文献   

15.
Bone marrow-derived dendritic cells (DCs) can be genetically engineered using adenoviral (Ad) vectors to express immunosuppressive molecules that promote T cell unresponsiveness. The success of these DCs for therapy of allograft rejection has been limited in part by the potential of the adenovirus to promote DC maturation and the inherent ability of the DC to undergo maturation following in vivo administration. DC maturation occurs via NF-kappaB-dependent mechanisms, which can be blocked by double-stranded "decoy" oligodeoxyribonucleotides (ODNs) containing binding sites for NF-kappaB. Herein, we describe the combined use of NF-kappaB ODNs and rAd vectors encoding CTLA4-Ig (Ad CTLA4-Ig) to generate stably immature murine myeloid DCs that secrete the potent costimulation blocking agent. These Ad CTLA4-Ig-transduced ODN DCs exhibit markedly impaired allostimulatory ability and promote apoptosis of activated T cells. Furthermore, administration of Ad CTLA4-Ig ODN-treated donor DCs (C57BL10; B10(H-2b)) before transplant significantly prolongs MHC-mismatched (C3HHeJ; C3H(H-2k)) vascularized heart allograft survival, with long-term (>100 days) donor-specific graft survival in 40% of recipients. The mechanism(s) responsible for DC tolerogenicity, which may involve activation-induced apoptosis of alloreactive T cells, do not lead to skewing of intragraft Th cytokine responses. Use of NF-kappaB antisense decoys in conjunction with rAd encoding a potent costimulation blocking agent offers promise for therapy of allograft rejection or autoimmune disease with minimization of systemic immunosuppression.  相似文献   

16.
A recent clinical trial of a T-cell-based AIDS vaccine delivered with recombinant adenovirus type 5 (rAd5) vectors showed no efficacy in lowering viral load and was associated with increased risk of human immunodeficiency virus type 1 (HIV-1) infection. Preexisting immunity to Ad5 in humans could therefore affect both immunogenicity and vaccine efficacy. We hypothesized that vaccine-induced immunity is differentially affected, depending on whether subjects were exposed to Ad5 by natural infection or by vaccination. Serum samples from vaccine trial subjects receiving a DNA/rAd5 AIDS vaccine with or without prior immunity to Ad5 were examined for the specificity of their Ad5 neutralizing antibodies and their effect on HIV-1 immune responses. Here, we report that rAd5 neutralizing antibodies were directed to different components of the virion, depending on whether they were elicited by natural infection or vaccination in HIV vaccine trial subjects. Neutralizing antibodies elicited by natural infection were directed largely to the Ad5 fiber, while exposure to rAd5 through vaccination elicited antibodies primarily to capsid proteins other than fiber. Notably, preexisting immunity to Ad5 fiber from natural infection significantly reduced the CD4 and CD8 cell responses to HIV Gag after DNA/rAd5 vaccination. The specificity of Ad5 neutralizing antibodies therefore differs depending on the route of exposure, and natural Ad5 infection compromises Ad5 vaccine-induced immunity to weak immunogens, such as HIV-1 Gag. These results have implications for future AIDS vaccine trials and the design of next-generation gene-based vaccine vectors.Recombinant adenovirus (rAd)-based vectors are currently under investigation in a variety of gene therapy and T-cell-based vaccine clinical trials. There are more than 370 such ongoing clinical trials for broad applications, including infectious diseases and cancer therapy (http://www.wiley.co.uk/genetherapy/clinical/). Based on supportive data from nonhuman primate studies, rAd-based vectors have been developed and tested in human clinical trials to deliver human immunodeficiency virus (HIV-1) gene products that stimulate HIV-specific immune responses. Preexisting immunity to Ad serotype 5 (Ad5), from which most vectors are derived, is common in humans. Though neutralizing antibodies to Ad5 may reduce the immunogenicity of Ad5-based vectors in animal models (16), their effect on immunity in subjects with previous Ad5 infection is poorly understood. In the STEP trial, which tested a Merck rAd5 vaccine encoding HIV-1 Gag, Pol, and Nef, vaccination failed to show protection, either by lowering viral load or by decreasing acquisition of infection (3, 9, 12, 21). Furthermore, the possibility was raised that subjects with preexisting neutralizing antibodies from natural Ad5 infection may have carried an increased risk of HIV infection after vaccination. Thus, understanding the nature and immune effects of Ad5 seropositivity in humans is important to the development of vaccines against AIDS and other diseases.Ad5 is a common cause of respiratory disease and an occasional cause of gastroenteritis in humans, and exposure before adolescence is common in human populations (19). Such exposure stimulates both innate and adaptive immune responses that generate neutralizing antibodies and virus-specific T-cell responses (6). These antibodies can also synergize with each other to achieve maximum viral neutralization (7, 22). The capsid protein specificity of Ad5 neutralizing antibodies has been reported for humans following administration of rAd5 gene therapy vectors for advanced liver or lung cancer (7, 10). However, results were presented solely for antibodies induced by administration of rAd5. One report has assessed Ad5 neutralizing antibodies with a healthy human population that was Ad5 seropositive from natural exposure to the virus (18). The median titer of the population was presented, but the frequency of protein-specific neutralizing antibody has not been defined for humans.Here we describe the first report of the natural frequency and effect on immunization of neutralizing antibodies specific for different Ad capsid proteins in human subjects. We address the fundamental mechanisms of how humans generate neutralizing antibodies to a common cold virus that is in widespread use as a vector for gene therapy and vaccines. Such mechanisms may also be applicable to other nonenveloped viruses, including adeno-associated viruses and other viruses containing multiple envelope surface proteins, like influenza. To analyze the contribution of anti-capsid antibodies to neutralization by different human serum samples, wild-type and chimeric vectors were utilized. For example, a rAd type 5 (rAd5) vector with a fiber derived from Ad35 fiber (rAd5 F35) can be used to analyze the anti-Ad5 capsid response independent of fiber. Conversely, a rAd35 vector with a fiber transposed from Ad5 can determine the specificity of neutralization mediated by the Ad5 fiber. Using these vectors, we have analyzed human serum samples from two HIV vaccine clinical trials, VRC 006 and HVTN 204, in which a single-dose rAd5 vaccine alone and a three-dose DNA prime/single dose rAd5 boost vaccine encoding HIV-1 Env A,B, and C; Gag; and Pol, respectively, were administered. Thus, we sought to characterize the specificity of rAd5 neutralizing antibodies in Ad5-immune subjects and to determine their effect on immune responses elicited by vaccination.  相似文献   

17.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have been constructed from Ad subgroup B, including rAd11 and rAd35, as well as from Ad subgroup D, including rAd49. However, the optimal combination of vectors for heterologous rAd prime-boost vaccine regimens and the extent of cross-reactive vector-specific neutralizing antibodies (NAbs) remain poorly defined. We have shown previously that the closely related vectors rAd11 and rAd35 elicited low levels of cross-reactive NAbs. Here we show that these cross-reactive NAbs correlated with substantial sequence homology in the hexon hypervariable regions (HVRs) and suppressed the immunogenicity of heterologous rAd prime-boost regimens. In contrast, vectors with lower hexon HVR homology, such as rAd35 and rAd49, did not elicit detectable cross-reactive vector-specific NAbs. Consistent with these findings, rAd35-rAd49 vaccine regimens proved more immunogenic than both rAd35-rAd5 and rAd35-rAd11 regimens in mice with anti-Ad5 immunity. These data suggest that optimal heterologous rAd prime-boost regimens should include two vectors that are both rare in human populations to circumvent preexisting antivector immunity as well as sufficiently immunologically distinct to avoid cross-reactive antivector immunity.  相似文献   

18.
Adenovirus type 35 (Ad35) is an important pathogen in immunosuppressed individuals such as AIDS patients and bone marrow transplant recipients. Ad35, a member of Ad subgroup B, differs with respect to pathogenic properties from the more fully characterized subgroup C Ad, such as Ad2 and Ad5. One region of human Ad which varies between subgroups and which may influence Ad pathogenesis is early region 3 (E3), a region which appears to modulate the immune response to Ad infection. In order to begin to characterize the differences between the Ad35 E3 and the E3 of other Ad, the complete DNA sequence of the Ad35 E3 promoter and coding sequence along with two flanking structural proteins, pVIII and fiber, has been determined. Ad35 contains open reading frames which are unique to the subgroup B Ad in addition to the four characterized immunoregulatory proteins encoded by the subgroup C Ad. Further evaluation of the sequence of one of these proteins, 18.5K, which is the class-I major histocompatibility complex (MHC) binding protein of 18.5 kDa, demonstrates that the amino acid sequence of this Ad2 gp19K homologue fits a proposed model of gp19K-MHC interaction. Analysis of promoter sequences demonstrates that an NF-κB site found in the subgroup C E3 promoter is absent from the Ad35 E3 promoter. In addition, the fiber genes of Ad35 and other subgroup B Ad have been shown to diverge in an unexpected way, yielding three clusters of fiber homology.  相似文献   

19.
Important therapeutic applications of genetically modified dendritic cells (DC) have been proposed; however, current vector systems have demonstrated only limited gene delivery efficacy to this cell type. By means of bispecific Abs, we have dramatically enhanced gene transfer to monocyte derived DC (MDDC) by retargeting adenoviral (Ad) vectors to a marker expressed on DC, CD40. Adenovirus targeted to CD40 demonstrated dramatic improvements in gene transfer relative to untargeted Ad vectors. Fundamental to the novelty of this system is the capacity of the vector itself to modulate the immunological status of the MDDC. This vector induces DC maturation as demonstrated phenotypically by increased expression of CD83, MHC, and costimulatory molecules, as well as functionally by production of IL-12 and an enhanced allostimulatory capacity in a MLR. In comparing this vector to other Ad-based gene transfer systems, we have illustrated that the features of DC maturation are not a function of the Ad particle, but rather a consequence of targeting to the CD40 marker. This vector approach may thus mediate not only high-efficiency gene delivery but also serve a proactive role in DC activation that could ultimately strengthen the utility of this vector for immunotherapy strategies.  相似文献   

20.
BACKGROUND: DC-presenting tumor Ag are currently being developed to be used as a vaccine in human cancer immunotherapy. To increase chances for successful therapy it is important to deliver full-length tumor Ag instead of loading single peptides. METHODS: In this study we used a fiber-modified adenoviral vector (rAd5F35) containing full-length tumor Ag cDNA to transduce human monocyte (Mo)-derived DC in vitro. Cells were efficiently transduced and survived for at least 3 days after adenoviral transduction. Phenotype and function after maturation of Mo-DC were not impaired by infection with adenovirus particles. Expression of the tumor-associated Ag mucin-1 (MUC1) was detected using MAb defining different MUC1 glycoforms. RESULTS: Non-transduced mature Mo-DC express endogenous MUC1 with normal glycosylation. After transduction with the rAd5F35-MUC1 adenoviral vector, Mo-DC also expressed MUC1 with tumor-associated glycosylation (Tn and T glycoforms), although no changes in mRNA levels of relevant glycosyltransferases could be demonstrated. DISCUSSION: The presence of aberrantly glycosylated MUC1 may influence Ag presentation of the tumor glycoforms of MUC1 to immune cells, affecting tumor cell killing. These findings could be highly relevant to developing strategies for cancer immunotherapy based on DC vaccines using MUC1 as tumor Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号