首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although it is known that the unfolded protein response (UPR) plays a significant role in the process of plasma cell differentiation, the contribution of the individual sensors of the UPR to this process remains unclear. In this study we examine the death signals and compensatory survival signals activated during B cell activation and the first stages of plasma cell differentiation. During in vitro differentiation of both primary murine B cells and the Bcl1 cell line, we demonstrate that in addition to activation of the physiological UPR, changes in the expression of several Bcl-2 proteins occur, which are consistent with a lowering of the apoptotic threshold of the cell. Specifically, we observed decreased expression of Bcl-2 and Mcl-1 and increased expression of the proapoptotic protein Bim. However, these changes were countered by Bcl-xL induction, which is necessary to protect differentiating cells both from ER stress-induced death by tunicamycin and from the death signals inherent in differentiation. Consistent with differentiating cells becoming dependent on Bcl-xL for survival, the addition of ABT-737 resulted in apoptosis in differentiating cells through the inhibition of sequestration of Bim. Confirming this result, differentiation in the context of RNAi-mediated Bcl-xL knockdown also induced apoptosis. This cell death is C/EBP homologous protein (CHOP)-dependent, connecting these events to the UPR. Thus plasma cell differentiation proceeds through a Bcl-xL-dependent intermediate.  相似文献   

2.
The notion of "morphogens" is an important one in developmental biology. By definition, a morphogen is a molecule that emanates from a specific set of cells that is present in a concentration gradient and that specifies the fate of each cell along this gradient. The strongest candidate morphogens are members of the transforming growth factor-beta (TGF-beta), Hedgehog (Hh), and Wnt families. While these morphogens have been extensively described as differentiation inducers, some reports also suggest their possible involvement in cell death and cell survival. It is frequently speculated that the cell death induction that is found associated with experimental removal of morphogens is the manifestation of abnormal differentiation signals. However, several recent reports have raised controversy about this death by default, suggesting that cell death regulation is an active process for shaping tissues and organs. In this review, we will present morphogens, with a specific emphasis on Sonic Hedgehog, a mammalian member of the Hh family, not as a positive regulators of cell differentiation but as key regulators of cell survival.  相似文献   

3.
4.
5.
In this review we present skin biology from the perspective of apoptosis. We stress that apoptosis acts as an important homeostatic and defence mechanism in the developing and mature epidermis. Programmed cell death functions in establishing the architecture of the human epidermis and its appendages during development by deletion of stage-specific cells and in the adult epidermis by elimination of excess and abnormal cells. Arguments are presented to support the hypothesis that known regulators of keratinocyte growth may act as survival factors which suppress the cell death pathway. Surviving cells continue to divide until they encounter anti-proliferative factors. Then, unless cells are severely injured and die of necrosis, they will terminally differentiate to death or will die by apoptosis. The mechanisms controlling keratinocyte maturation are co-ordinated with cell position within the epidermal strata. Inappropriate regulatory signals or response of a cell inappropriate to its state will activate apoptosis. Parallels between terminally differentiating keratinocytes and apoptotic cells imply that terminal differentiation and apoptosis proceed along the same death pathway. For terminally differentiating cells, however, this pathway is more elaborate because it allows expression of tissue- and differentiation-specific genes. A model is presented that integrates apoptosis and keratinocyte growth and differentiation.  相似文献   

6.
7.
In multicellular organisms, death, survival, proliferation, and differentiation of a given cell depend on signals produced by neighboring and/or distant cells, resulting in the coordinated development and function of the various tissues. In the nervous system, control of cell survival and differentiation is achieved through the action of a distinct group of polypeptides collectively known as neurotrophic factors. Recent findings support the view that trophic factors also are involved in the response of the nervous system to acute injury. By contrast, nutrients are not traditionally viewed as potential trophic factors; however, there is increasing evidence that at least some influence neuronal differentiation. During development the brain is responsive to variations in nutrient supply, and this increased sensitivity or vulnerability of the brain to nutrient supply may reappear during neuronal repair, a period during which a rapid membrane resynthesis and reestablishment of synthetic pathways occur. To further evaluate the potential of specific nutrients to act as pharmacologic agents in the repair of injured neurons, the effects of retinoic acid, an active metabolite of vitamin A, and its role as a trophic factor are discussed. This literature review is intended to provide background information regarding the effect of retinoic acid on the cholinergic phenotype and the differentiation of these neurons and to explain how it may promote neuronal repair and survival following injury.  相似文献   

8.
9.
Cell death is a biological process that occurs during differentiation and maturation of certain cell types, during senescence, or as part of a defense mechanism against microbial pathogens. Intercellular coordination is thought to be necessary to restrict the spread of death signals, although little is known about how cell death is controlled at the tissue level. The recent characterization of a plasmodesmal protein, PDLP5, has revealed an important role for plasmodesmal control during salicylic acid-mediated cell death responses. Here, we discuss molecular factors that are potentially involved in PDLP5 expression, and explore possible signaling networks that PDLP5 interacts with during basal defense responses.  相似文献   

10.
Receptor tyrosine kinases such as the EGF receptor transduce extracellular signals into multiple cellular responses. In the developing Drosophila eye, EGFR activity triggers cell differentiation. Here we focus on three additional cell autonomous aspects of EGFR function and their coordination with differentiation, namely, withdrawal from the cell cycle, mitosis, and cell survival. We find that, whereas differentiation requires intense signaling, dependent on multiple reinforcing ligands, lesser EGFR activity maintains cell cycle arrest, promotes mitosis, and protects against cell death. Each response requires the same Ras, Raf, MAPK, and Pnt signal transduction pathway. Mitotic and survival responses also involve Pnt-independent branches, perhaps explaining how survival and mitosis can occur independently. Our results suggest that, rather than triggering all or none responses, EGFR coordinates partially independent processes as the eye differentiates.  相似文献   

11.
Gap junctions and the propagation of cell survival and cell death signals   总被引:9,自引:0,他引:9  
Gap junctions are a unique type of intercellular channels that connect the cytoplasm of adjoining cells. Each gap junction channel is comprised of two hemichannels or connexons and each connexon is formed by the aggregation of six protein subunits known as connexins. Gap junction channels allow the intercellular passage of small (< 1.5 kDa) molecules and regulate essential processes during development and differentiation. However, their role in cell survival and cell death is poorly understood. We review experimental data that support the hypothesis that gap junction channels may propagate cell death and survival modulating signals. In addition, we explore the hypothesis that hemichannels (or unapposed connexons) might be used as a paracrine conduit to spread factors that modulate the fate of the surrounding cells. Finally, direct signal transduction activity of connexins in cell death and survival pathways is addressed.These authors share senior authorship.This study was supported by Ghent University GOA grant no. 12050502.This revised version was published online in May 2005 with corrections to one authors email address.  相似文献   

12.
On their own, retinoid X receptor (RXR)-selective ligands (rexinoids) are silent in retinoic acid receptor (RAR)-RXR heterodimers, and no selective rexinoid program has been described as yet in cellular systems. We report here on the rexinoid signaling capacity that triggers apoptosis of immature promyelocytic NB4 cells as a default pathway in the absence of survival factors. Rexinoid-induced apoptosis displays all features of bona fide programmed cell death and is inhibited by RXR, but not RAR antagonists. Several types of survival signals block rexinoid-induced apoptosis. RARalpha agonists switch the cellular response toward differentiation and induce the expression of antiapoptosis factors. Activation of the protein kinase A pathway in the presence of rexinoid agonists induces maturation and blocks immature cell apoptosis. Addition of nonretinoid serum factors also blocks cell death but does not induce cell differentiation. Rexinoid-induced apoptosis is linked to neither the presence nor stability of the promyelocytic leukemia-RARalpha fusion protein and operates also in non-acute promyelocytic leukemia cells. Together our results support a model according to which rexinoids activate in certain leukemia cells a default death pathway onto which several other signaling paradigms converge. This pathway is entirely distinct from that triggered by RAR agonists, which control cell maturation and postmaturation apoptosis.  相似文献   

13.
The mammary gland is a developmentally dynamic, hormone-responsive organ that undergoes proliferation and differentiation within the secretory epithelial compartment during pregnancy. The epithelia are maintained by pro-survival signals (e.g., Stat5, Akt1) during lactation, but undergo apoptosis during involution through inactivation of cell survival pathways and upregulation of pro-apoptotic proteins. To assess if the survival signals in the functionally differentiated mammary epithelial cells can override a pro-apoptotic signal, we generated transgenic mice that express Bax under the whey acidic protein (WAP) promoter. WAP-Bax females exhibited a lactation defect and were unable to nourish their offspring. Mammary glands demonstrated: (1) a reduction in epithelial content, (2) hallmark signs of mitochondria-mediated cell death, (3) an increase in apoptotic cells by TUNEL assay, and (4) precocious Stat3 activation. This suggests that upregulation of a single pro-apoptotic factor of the Bcl-2 family is sufficient to initiate apoptosis of functionally differentiated mammary epithelial cells in vivo.  相似文献   

14.
FoxO转录因子的活性调节及对哺乳动物细胞进程的调控   总被引:1,自引:0,他引:1  
FoxO转录因子在哺乳动物的细胞分化、增殖和细胞存活中发挥着重要调控作用,其转录活性受PI3K通路、非PI3K依赖通路、乙酰化和泛素化作用等多种途径调控.FoxO受到上游信号分子PI3K/Akt、SGK等的激活,调节靶基因的转录,从而调节哺乳动物细胞周期的进程和凋亡事件.FoxO已成为肿瘤、癌症科学研究的热点之一.  相似文献   

15.
Cellular proliferation is an essential feature of the adaptive immune response. The introduction of the division tracking dye carboxyfluorescein diacetate succinimidyl ester (CFSE) has made it possible to monitor the number of cell divisions during proliferation and to examine the relationship between proliferation and differentiation. Although qualitative examination of CFSE data may be useful, substantially more information about division and death rates can be extracted from quantitative CFSE time-series experiments. Quantitative methods can reveal in detail how lymphocyte proliferation and survival are regulated and altered by signals such as those received from co-stimulatory molecules, drugs and genetic polymorphisms. In this protocol, we present a detailed method for examining time-series data using graphical and computer-based procedures available to all experimenters.  相似文献   

16.
The unfolding of the developmental programme and the organization of multicellular organisms require that cell numbers in differentiating and differentiated tissues are regulated. This is done by two distinct processes : control of cell proliferation and differentiation to a post-mitotic stage; and control of survival in post-mitotic cells. It is argued that elimination of cells by programmed cell death (PCD), which operates in both cases, is regulated by distinct mechanisms: PCD in post-mitotic cells corresponds to 'death-by-default' of (counter apoptotic) survival signals (Raff, 1992), while apoptosis in cycling cells, or in resting cells submitted to proliferative signals, results from antonymy in signalling pathways, i.e. a situation where a cell simultaneously engages into incompatible pathways of proliferation and cell cycle arrest. Antonymy arises in cells irreversibly committed to either proliferation or arrest and responding to a contradictory signal. In turn, the irreversible commitment arises by uncoupling of signal transduction from co-ordinated pathways (as in transformed cells with constitutive expression of growth-associated genes or in terminally differentiated post-mitotic cells).  相似文献   

17.
The Drosophila retina has a precise repeating structure based on the unit eye, or ommatidium. This review summarizes studies of the cell proliferation and survival episodes that affect the number of cells available to make each ommatidium. Late in larval development, as differentiation and patterning begin, the retinal epithelium exhibits striking regulation of the cell cycle including a transient G1 arrest of all cells, followed by a "Second Mitotic Wave" cell cycle that is regulated at the G2/M transition by local intercellular signals. Reiterated episodes of cell death also contribute to precise regulation of retinal cell number. The EGF receptor homolog has multiple roles in retinal proliferation and survival.  相似文献   

18.
Schwann cells as regulators of nerve development.   总被引:15,自引:0,他引:15  
Myelinating and non-myelinating Schwann cells of peripheral nerves are derived from the neural crest via an intermediate cell type, the Schwann cell precursor [K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves, Neuron 12 (1994) 509-527]. The survival and maturation of Schwann cell precursors is controlled by a neuronally derived signal, beta neuregulin. Other factors, in particular endothelins, regulate the timing of precursor maturation and Schwann cell generation. In turn, signals derived from Schwann cell precursors or Schwann cells regulate neuronal numbers during development, and axonal calibre, distribution of ion channels and neurofilament phosphorylation in myelinated axons. Unlike Schwann cell precursors, Schwann cells in older nerves survive in the absence of axons, indicating that a significant change in survival regulation occurs. This is due primarily to the presence of autocrine growth factor loops in Schwann cells, present from embryo day 18 onwards, that are not functional in Schwann cell precursors. The most important components of the autocrine loop are insulin-like growth factors, platelet derived growth factor-BB and neurotrophin 3, which together with laminin support long-term Schwann cell survival. The paracrine dependence of precursors on axons for survival provides a mechanism for matching precursor cell number to axons in embryonic nerves, while the ability of Schwann cells to survive in the absence of axons is an absolute prerequisite for nerve repair following injury. In addition to providing survival factors to neurones and themselves, and signals that determine axonal architecture, Schwann cells also control the formation of peripheral nerve sheaths. This involves Schwann cell-derived Desert Hedgehog, which directs the transition of mesenchymal cells to form the epithelium-like structure of the perineurium. Schwann cells thus signal not only to themselves but also to the other cellular components within the nerve to act as major regulators of nerve development.  相似文献   

19.
Neurotrophins and cell death   总被引:1,自引:0,他引:1  
The neurotrophins - NGF, BDNF, NT-3 - are secreted proteins that play a major role in neuron survival, differentiation and axon wiring toward target territories. They do so by interacting with their main tyrosine kinase receptors TrkA, TrkB, TrkC and p75(NTR). Even though there is a general consensus on the view that neurotrophins are survival factors, there are two fundamentally different views on how they achieve this survival activity. One prevailing view is that all neurons and more generally all normal cells are naturally committed to die unless a survival factor blocks this death. This death results from the engagement of a "default" apoptotic cell program. The minority report supports, on the opposite, that neurotrophin withdrawal is associated with an active signal of cell death induced by unbound dependence receptors. We will discuss here how neurotrophins regulate cell death and survival and how this has implications not only during nervous system development but also during cancer progression.  相似文献   

20.
Ca2+ signals and death programmes in neurons   总被引:3,自引:0,他引:3  
Cell death programmes are generally defined by biochemical/genetic routines that are linked to their execution and by the appearance of more or less typical morphological features. However, in pathological settings death signals may engage complex and interacting lethal pathways, some of which are common to different cells, whereas others are linked to a specific tissue and differentiation pattern. In neurons, death programmes can be spatially and temporally segregated. Most importantly physiological Ca2+ signals are essential for cell function and survival. On the other hand, Ca2+ overload or perturbations of intracellular Ca2+ compartmentalization can activate or enhance mechanisms leading to cell death. An imbalance between Ca2+ influx and efflux from cells is the initial signal leading to Ca2+ overload and death of ischaemic neurons or cardiomyocytes. Alterations of intracellular Ca2+ storage can integrate with death signals that do not initially require Ca2+, to promote processing of cellular components and death by apoptosis or necrosis. Finally, Ca2+ can directly activate catabolic enzymes such as proteases, phospholipases and nucleases that directly cause cell demise and tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号