首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the 'exact cancellation' limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state.  相似文献   

2.
A DNA-based model system is described for studying electron spin-spin interactions between a paramagnetic metal ion and a nitroxide spin label. The modified base deoxythymidine-EDTA (dT-EDTA) chelates the divalent or trivalent metal ion and produces a new feature in the circular dichroism (CD) spectra that makes it possible to monitor local DNA melting. Based on the results of optical and electron paramagnetic resonance (EPR) experiments, we find that the terminus of the DNA duplex that incorporates dT-EDTA and the spin-label melts at a higher temperature than the rest of the DNA duplex. EPR microwave progressive power saturation experiments performed at 77 K are consistent with the specific binding of Dy(III) at the EDTA site and an intramolecular dipole-dipole interaction between the nitroxide spin-label and the chelated Dy(III). This model system should be suitable for studying the relaxation properties of metal ions by saturation-recovery EPR.  相似文献   

3.
Pulsed electron paramagnetic resonance (EPR) distance measurement techniques target macromolecular structure elucidation at both the local and global level. Recent developments in pulse microwave technology and high-field EPR have led to the development of a variety of pulsed EPR distance measurement techniques. These methods have emerged as powerful tools for the determination of structure/function relationships in macromolecular systems. In this review article, we discuss recent applications of long-range and short-range EPR distance measurements.  相似文献   

4.
The cupredoxin fold, a Greek key beta-barrel, is a common structural motif in a family of small blue copper proteins and a subdomain in many multicopper oxidases. Here we show that a cupredoxin domain is present in subunit II of cytochrome c and quinol oxidase complexes. In the former complex this subunit is thought to bind a copper centre called CuA which is missing from the latter complex. We have expressed the C-terminal fragment of the membrane-bound CyoA subunit of the Escherichia coli cytochrome o quinol oxidase as a water-soluble protein. Two mutants have been designed into the CyoA fragment. The optical spectrum shows that one mutant is similar to blue copper proteins. The second mutant has an optical spectrum and redox potential like the purple copper site in nitrous oxide reductase (N2OR). This site is closely related to CuA, which is the copper centre typical of cytochrome c oxidase. The electron paramagnetic resonance (EPR) spectra of both this mutant and the entire cytochrome o complex, into which the CuA site has been introduced, are similar to the EPR spectra of the native CuA site in cytochrome oxidase. These results give the first experimental evidence that CuA is bound to the subunit II of cytochrome c oxidase and open a new way to study this peculiar copper site.  相似文献   

5.
The paper reports on two fungal laccases from Coriolus hirsutus and Coriolus zonatus and their type-2 copper-depleted derivatives. Temperature-induced changes of the copper centers were characterized by optical and electron paramagnetic resonance (EPR) spectroscopy, and the overall protein stability by differential scanning microcalorimetry. The intact enzymes showed highly cooperative thermal unfolding transitions at about 90 degrees C. Type-2 copper depletion led to uncoupling of the domains characterized by a different melting pattern which resolved three subtransitions. Melting curves monitored optically at 290, 340 and 610 nm showed additional transitions below thermal unfolding temperature. EPR spectra of the intact laccases showed the disintegration of the trinuclear copper cluster accompanied by loss of one of the copper ions and disappearance of the strong antiferromagnetic coupling in the type-3 site at 70 degrees C and above 70 degrees C. The copper centers of type-2 copper-depleted laccase showed reduced thermotolerance.  相似文献   

6.
The type 1 copper in Pseudomonas aeruginosa azurin was studied by electron paramagnetic resonance (EPR) spectroscopy at low microwave frequencies. Partially resolved ligand hyperfine structure was observed in the perpendicular region of the spectra at both S-band (2.4 GHz) and L-band (1.1 GHz). A trial and error method, requiring several hundred simulations, has been used to simulate the low frequency EPR data and yield an optimum value of 30 MHz for ACUx, more than one half that previously reported. The fit between the simulated and experimental data is sensitive to changes in the Euler angles and, in particular, to the angle alpha which rotates the Cu A-tensor about the z-axis. Thus, the A- and g-tensors for copper in P. aeruginosa azurin do not appear to be coincident. A value for the Euler angle beta of at least 10 degrees does not disturb the fit between the simulated and experimental data. These studies demonstrate the advantage of evaluating EPR parameters from simulations at more than one frequency, especially at low frequencies where ligand superhyperfine structure may be resolved for type 1 copper.  相似文献   

7.
1. The reaction of nitric oxide with oxidized and reduced ascorbate oxidase (L-ascorbate: oxygen oxidoreductase, EC 1.10.3.3) has been investigated by optical absorption measurements and electron paramagnetic resonance, and the results are compared with those of ceruloplasmin. 2. Upon anaerobic incubation of oxidized ascorbate oxidase with nitric oxide a decrease of the absorbance at 610 nm is found, which is due to an electron transfer from nitric oxide to Type-1 copper. 3. In the presence of nitric oxide the EPR absorbance of ascorbate oxidase decreases and shows predominatly a signal with characteristics of Type-2 copper (g parallel = 2.248; A parallel = 188 G), whereas the type-1 copper signal has vanished. 4. Comparison of the intensities of the EPR signals before and after NO-treatment points to the presence of one Type-2 and three Type-1 copper atoms per molecule of ascorbate oxidase. 5. It is shown that the changes in the optical and the EPR spectrum of ascorbate oxidase induced by nitric oxide are reversible. No difference in enzymic activity is found between the native enzyme and the NO-treated enzyme after removal of nitric oxide.  相似文献   

8.
The reaction of human ceruloplasmin and anion treated ceruloplasmin with diethyldithiocarbamate was studied at pH 5.5. The analysis of optical and EPR spectra at 9 GHz showed that ceruloplasmin contains five paramagnetic copper ions, two of which, X and Y, not involved in enzymatic activity, are chelated by diethyldithiocarbamate; the complex thus formed is easily removed by high-speed centrifugation. However, the enzyme depleted of these two X and Y copper ions is able to compete with the Cu(II)-diethyldithiocarbamate complex, as time elapses, recovering both Cu(II) atoms. In addition diethyldithiocarbamate acts as a reducing agent for the two type-I copper atoms when added in large excess to the enzyme or the anion treated enzyme.  相似文献   

9.
Using low frequency 2 to 4 GHz EPR at 10 K, we have resolved previously unseen hyperfine structure associated with the EPR-detectable copper signal of cytochrome c oxidase. The observed hyperfine structure appears consistent with hyperfine coupling to copper; although to account for all of the observed structure, an additional magnetic interaction is required as well. This work points out the utility of the 2 to 4 GHz EPR technique for resolving electronic hyperfine structural information from copper and possibly other paramagnetic sites in biomolecules when random variation in electronic g values is a cause of EPR line-broadening.  相似文献   

10.
Heavy metals have been implicated as the causative agents for the pathogenesis of the most prevalent neurodegenerative disease. Various mechanisms have been proposed to explain the toxic effects of metals ranging from metal-induced oxidation of protein to metal-induced changes in the protein conformation. Aggregation of a-synuclein is implicated in Parkinson's disease (PD), and various metals, including copper, constitute a prominent group of alpha-synuclein aggregation enhancers. In this study, we have systematically characterized the a-synuclein-Cu21 binding sites and analyzed the possible role of metal binding in a-synuclein fibrillation using a set of biophysical techniques, such as electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), circular dichroism (CD), and size exclusion chromatography (SEC). Our analyses indicated that a-synuclein possesses at least two binding sites for Cu21. We have been able to locate one of the binding sites in the N-terminal region. Furthermore, based on the EPR studies of model peptides and Beta-synuclein, we concluded that the suspected His residue did not appear to participate in strong Cu21 binding.  相似文献   

11.
A simple strategy to separate overlapping electron paramagnetic resonance (EPR) signals in biological systems is presented. Pulsed EPR methods (inversion- and saturation-recovery) allow the determination of the T(1) spin-lattice relaxation times of paramagnetic centers. T(1) may vary by several orders of magnitude depending on the species under investigation. These variations can be employed to study selectively individual species from a spectrum that results from an overlap of two species using an inversion-recovery filtered (IRf) pulsed EPR technique. The feasibility of such an IRf field-swept technique is demonstrated on model compounds (alpha,gamma-bisphenylene-beta-phenylallyl-benzolate, BDPA, and 2,2,6,6-tetramethyl-piperidine-1-oxyl, TEMPO) and a simple strategy for the successful analysis of such mixtures is presented. Complex I is a multisubunit membrane protein of the respiratory chain containing several iron-sulfur (FeS) centers, which are observable with EPR spectroscopy. It is not possible to investigate the functionally important FeS cluster N2 separately because this EPR signal always overlaps with the other FeS signals. This cluster can be studied selectively using the IRf field-swept technique and its EPR spectrum is in excellent agreement with previous cw-EPR data from the literature. In addition, the possibility to separate the hyperfine spectra of two spectrally overlapping paramagnetic species is demonstrated by applying this relaxation filter together with hyperfine spectroscopy (REFINE). For the first time, the application of this filter to a three-pulse electron spin-echo envelope modulation (ESEEM) pulse sequence is demonstrated to selectively observe hyperfine spectra on a system containing two paramagnetic species. Finally, REFINE is used to assign the observed nitrogen modulation in complex I to an individual iron-sulfur cluster.  相似文献   

12.
The binuclear Cu(A) site engineered into Pseudomonas aeruginosa azurin has provided a Cu(A)-azurin with a well-defined crystal structure and a CuSSCu core having two equatorial histidine ligands, His120 and His46. The mutations His120Asn and His120Gly were made at the equatorial His120 ligand to understand the histidine-related modulation to Cu(A), notably to the valence delocalization over the CuSSCu core. For these His120 mutants Q-band electron nuclear double resonance (ENDOR) and multifrequency electron paramagnetic resonance (EPR) (X, C, and S-band), all carried out under comparable cryogenic conditions, have provided markedly different electronic measures of the mutation-induced change. Q-band ENDOR of cysteine C(beta) protons, of weakly dipolar-coupled protons, and of the remaining His46 nitrogen ligand provided hyperfine couplings that were like those of other binuclear mixed-valence Cu(A) systems and were essentially unperturbed by the mutation at His120. The ENDOR findings imply that the Cu(A) core electronic structure remains unchanged by the His120 mutation. On the other hand, multifrequency EPR indicated that the H120N and H120G mutations had changed the EPR hyperfine signature from a 7-line to a 4-line pattern, consistent with trapped-valence, Type 1 mononuclear copper. The multifrequency EPR data imply that the electron spin had become localized on one copper by the His120 mutation. To reconcile the EPR and ENDOR findings for the His120 mutants requires that either: if valence localization to one copper has occurred, the spin density on the cysteine sulfurs and the remaining histidine (His46) must remain as it was for a delocalized binuclear Cu(A) center, or if valence delocalization persists, the hyperfine coupling for one copper must markedly diminish while the overall spin distribution on the CuSSCu core is preserved.  相似文献   

13.
Electron paramagnetic resonance (EPR) spectroscopy can be applied to measure oxygen concentrations in cells and tissues. Oxygen is paramagnetic, and thus it interacts with a free radical label resulting in a broadening of the observed linewidth. Recently we have developed instrumentation in order to enable the performance of EPR spectroscopy and EPR oximetry in the intact beating heart. This spectrometer consists of 1–2-GHz microwave bridge with the source locked to the resonant frequency of a specially designed lumped circuit resonator. This technique is applied to measure the kinetics of the uptake and clearance of different free radical labels. It is demonstrated that this technique can be used to noninvasively measure tissue oxygen concentration. In addition, rapid scan EPR measurements can be performed enabling gated millisecond measurements of oxygen concentrations to be performed over the cardiac cycle. Thus, low-frequency EPR spectroscopy offers great promise in the study of tissue oxygen concentrations and the role of oxygen in metabolic control.  相似文献   

14.
Chicken ceruloplasmin has been previously reported to display a number of key differences relative to human ceruloplasmin: a lower copper content and a lack of a type 2 copper signal by electron paramagnetic resonance (EPR) spectroscopy. We have studied the copper sites of chicken ceruloplasmin in order to probe the origin of these differences, focusing on two forms of the enzyme: "resting" (as isolated by a fast, one-step procedure) and "peroxide-oxidized". From X-ray absorption, EPR, and UV/visible absorption spectroscopies, we have shown that all of the copper sites are oxidized in peroxide-oxidized chicken ceruloplasmin and that none of the type 1 copper sites display the EPR features typical for type 1 copper sites that lack an axial methionine. In the resting form, the type 2 copper center is reduced. Upon oxidation, it does not appear in the EPR spectrum at 77 K, but it can be observed by using magnetic susceptibility, EPR at approximately 8 K, and magnetic circular dichroism spectroscopy. It displays unusually fast relaxation, indicative of coupling with the adjacent type 3 copper pair of the trinuclear copper cluster. From reductive titrations, we have found that the reduction potential of the type 2 center is higher than those of the other copper sites, thus explaining why it is reduced in the resting form. These results provide new insight into the nature of the additional type 1 copper sites and the redox distribution among copper sites in the different ceruloplasmins relative to other multicopper oxidases.  相似文献   

15.
A gene (yacK) encoding a putative multicopper oxidase (MCO) was cloned from Escherichia coli, and the expressed enzyme was demonstrated to exhibit phenoloxidase and ferroxidase activities. The purified protein contained six copper atoms per polypeptide chain and displayed optical and electron paramagnetic resonance (EPR) spectra consistent with the presence of type 1, type 2, and type 3 copper centers. The strong optical A(610) (E(610) = 10,890 M(-1) cm(-1)) and copper stoichiometry were taken as evidence that, similar to ceruloplasmin, the enzyme likely contains multiple type 1 copper centers. The addition of copper led to immediate and reversible changes in the optical and EPR spectra of the protein, as well as decreased thermal stability of the enzyme. Copper addition also stimulated both the phenoloxidase and ferroxidase activities of the enzyme, but the other metals tested had no effect. In the presence of added copper, the enzyme displayed significant activity against two of the phenolate siderophores utilized by E. coli for iron uptake, 2,3-dihydroxybenzoate and enterobactin, as well as 3-hydroxyanthranilate, an iron siderophore utilized by Saccharomyces cerevisiae. Oxidation of enterobactin produced a colored precipitate suggestive of the polymerization reactions that characterize microbial melanization processes. As oxidation should render the phenolate siderophores incapable of binding iron, yacK MCO activity could influence levels of free iron in the periplasm in response to copper concentration. This mechanism may explain, in part, how yacK MCO moderates the sensitivity of E. coli to copper.  相似文献   

16.
Chain complex of copper(II) hexafluoroacetylacetonate with pyrazole-substituted nitronyl nitroxide containing exchange-coupled copper(II)–nitroxide clusters has been studied using electron paramagnetic resonance (EPR) spectroscopy. The structural rearrangements at low temperatures induce spin transitions in one half of the copper(II)–nitroxide clusters and effectively lead to reversible diamagnetic dilution. This results in significant changes of EPR spectra and allows us to obtain the value of dipole–dipole interaction in exchange-coupled spin pair as well as the value of exchange interaction between neighboring pairs.  相似文献   

17.
In electron paramagnetic resonance (EPR) nonlinear phenomena with respect to magnetic-field modulation are often studied by out-of-phase spectra recordings. The existence of a nonzero out-of-phase signal implies that the EPR signal is phase shifted relative to the modulation signal. This phase shift is called a magnetization hysteresis. The hysteresis angle varies during a sweep through the resonance conditions for a free radical. By recording this variation, a magnetization hysteresis (MH) spectrum results. In practice, a MH spectrum is computer calculated from two EPR spectra detected with a 90 degree difference in phase setting. There is no need for a careful null-phase calibration like that in traditional analysis of nonlinearities. The MH spectra calculated from second harmonic EPR spectra of spin labels were highly dependent on the rotational correlation time. The technique can therefore be used to study slow molecular motion. In the present work MH spectra and Hemminga and deJager's magnitude saturation transfer EPR spectra (Hemminga, M. A., and P. A. deJager, 1981, J. Magn. Reson., 43:324-327) have been analyzed to define parameters that can describe variations in the rotational correlation time. A novel modification of the sample holder and temperature regulation equipment is described.  相似文献   

18.
Azide binding to the blue copper oxidases laccase and ascorbate oxidase (AO) was investigated by electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. As the laccase : azide molar ratio decreases from 1:1 to 1:7, the intensity of the type 2 (T2) Cu(II) EPR signal decreases and a signal at g approximately 1.9 appears. Temperature and microwave power dependent EPR measurements showed that this signal has a relatively short relaxation time and is therefore observed only below 40 K. A g approximately 1.97 signal, with similar saturation characteristics was found in the AO : azide (1:7) sample. The g < 2 signals in both proteins are assigned to an S = 1 dipolar coupled Cu(II) pair whereby the azide binding disrupts the anti-ferromagnetic coupling of the type 3 (T3) Cu(II) pair. Analysis of the position of the g < 2 signals suggests that the distance between the dipolar coupled Cu(II) pair is shorter in laccase than in AO. The proximity of T2 Cu(II) to the S = 1 Cu(II) pair enhances its relaxation rate, reducing its signal intensity relative to that of native protein. The disruption of the T3 anti-ferromagnetic coupling occurs only in part of the protein molecules, and in the remaining part a different azide binding mode is observed. The 130 K EPR spectra of AO and laccase with azide (1:7) exhibit, in addition to an unperturbed T2 Cu(II) signal, new features in the g parallel region that are attributed to a perturbed T2 in protein molecules where the anti-ferromagnetic coupling of T3 has not been disrupted. While these features are also apparent in the AO : azide sample at 10 K, they are absent in the EPR spectra of the laccase : azide sample measured in the range of 6-90 K. Moreover, pulsed ENDOR measurements carried out at 4.2 K on the latter exhibited only a reduction in the intensity of the 20 MHz peak of the 14N histidine coordinated to the T2 Cu(II) but did not resolve any significant changes that could indicate azide binding to this ion. The lack of T2 Cu(II) signal perturbation below 90 K in laccase may be due to temperature dependence of the coupling within the trinuclear : azide complex.  相似文献   

19.
Parkinson's disease (PD) is the second most prevalent age-related, neurodegenerative disorder, affecting >1% of the population over the age of 60. PD pathology is marked by intracellular inclusions composed primarily of the protein α-synuclein (α-syn). These inclusions also contain copper, and the interaction of Cu(2+) with α-syn may play an important role in PD fibrillogenesis. Here we report the stoichiometry, affinity, and coordination structure of the Cu(2+)-α-syn complex. Electron paramagnetic resonance (EPR) titrations show that monomeric α-syn binds 1.0 equiv of Cu(2+) at the protein N-terminus. Next, an EPR competition technique demonstrates that α-syn binds Cu(2+) with a K(d) of ≈0.10 nM. Finally, EPR and electron spin echo modulation (ESEEM) applied to a suite of mutant and truncated α-syn constructs reveal a coordination sphere arising from the N-terminal amine, the Asp2 amide backbone and side chain carboxyl group, and the His50 imidazole. The high binding affinity identified here, in accord with previous measurements, suggests that copper uptake and sequestration may be a part of α-syn's natural function, perhaps modulating copper's redox properties. The findings further suggest that the long-range interaction between the N-terminus and His50 may have a weakening effect on the interaction of α-syn with lipid membranes, thereby mobilizing monomeric α-syn and hastening fibrillogenesis.  相似文献   

20.
Nitrous oxide reductase from the denitrifying bacterium Pseudomonas perfectomarina has been isolated and purified to homogeneity. The enzyme contained about eight copper atoms/120 kDa and was composed of two presumably identical subunits. The isoelectric point was 5.1. Several spectroscopically distinct forms of the enzyme were identified. A 'pink' form of the enzyme was obtained when the purification was done aerobically. The specific activity of this species was around 30 nkat/mg protein as measured by the nitrous-oxide-dependent oxidation of photochemically reduced benzyl viologen. A 'purple' form of the enzyme, whose catalytic activity was 2-5-fold higher, was obtained when the purification was done anaerobically. The activity of both forms of the enzyme was substantially increased by dialyzing the protein against 2-(N-cyclohexylamino)ethanesulfonate buffer at pH approximately equal to 10. A maximal activity of 1000 nkat/mg protein has been obtained for the purple form using this procedure. A 'blue', enzymatically inactive form of the enzyme resulted when either the pink or the purple species was exposed to excess dithionite or ascorbate. Anaerobic, potentiometric titrations of both the purple and the pink form of the enzyme gave a Nernst factor, n540, of 0.95 and a midpoint potential, E'0,540 of +260 mV (vs SHE, 25 degrees C, Tris/HCl buffer, pH 7.5). Electron paramagnetic resonance (EPR) and optical spectra of N2O reductase suggested the presence of an unusual type 1 copper center. Type 2 copper was absent. The hyperfine splitting in the g parallel region consisted of a seven-line pattern. In the presence of excess of reductant, a broad EPR signal with g values at 2.18 and 2.06 was observed. The EPR spectra of the pink and purple forms of the enzyme were similar; however, the spectrum of the purple form was better resolved with g parallel = 2.18 (A parallel = 3.83 mT) and g perpendicular = 2.03 (A perpendicular = 2.8 mT). Most of the copper in N2O reductase was removed by anaerobic dialysis against KCN. Reaction of the apoprotein with Cu(en)2SO4 partially regenerated the optical and EPR spectra of the holoprotein; the resulting protein was enzymatically inactive. Monospecific antibodies against the copper protein strongly inhibited the N2O reductase activity of purified samples and cell-free extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号