首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA strand damage in isolated male germ cells (MGC) was evaluated after in vitro exposure to bleomycin (BLM), a known genotoxin. The alkaline elution technique was used to determine DNA-strand breaks. Concentration-dependent strand damage was established following exposure to bleomycin for 1 h at 37 degrees C. Exposure at 0 degrees C resulted in an increase in the frequency of strand breaks as compared to those observed at 37 degrees C. Pretreatment of cells with deferoxamine (DM), an iron-selective chelating agent, abolished the DNA damage induced by bleomycin. Isolated male germ cells responded in a predictable and reproducible manner thus supporting their use in mechanistic studies of genotoxicity.  相似文献   

2.
Chinese hamster V79 cultured cells were treated with bleomycin (BLM), paraquat (PQ), N-methyl-N-nitrosourea (MNU), and ACNU (an anti-cancer agent) at 30-43 degrees C. The survival fractions normalized by those released from heat-death were plotted vs. the integrated doses of the chemical. Arrhenius analysis of the cell inactivation by the chemical was made. The results revealed that BLM and PQ exerted synergistic cytotoxicity with hyperthermia, whereas MNU and ACNU exerted temperature-dependent cytotoxicities obeying the Arrhenius law.  相似文献   

3.
The effect of recombinant interferon-alpha-2a (rIFN-alpha-2a) on the induction of chromosomal aberrations (CAs) by the radiomimetic antibiotic bleomycin (BLM, 5 microg/ml, 30 min, 37 degrees C) in Chinese hamster ovary (CHO) cells was investigated. Recombinant IFN-alpha-2a (4500-180,000IU/ml) was added to the cell cultures 0.5 or 24h before BLM (and left in the culture medium until the end of treatments) or immediately after BLM treatment (and left in the culture medium until harvesting). Cells were sampled at 18 or 2.5h after the end of treatments, in order to determine, respectively, the effect of rIFN-alpha-2a on the total chromosome damage induced by BLM and on the chromosome damage induced by this antibiotic in the G(2) phase of the cell cycle. A statistically significant increase in the frequency of CAs was observed following treatment with BLM (P<0.05), whereas treatments with rIFN-alpha-2a alone did not produce any significant increase of CAs over control values (P>0.05). The yield of CAs by BLM was significantly inhibited by rIFN-alpha-2a (P<0.05, 65.3% maximum inhibition). A strong inhibitory effect (around 80%) of rIFN-alpha-2a on the yield of BLM-induced CAs in the G(2) phase of the cell cycle was also observed. It is suggested that the inhibitory effect of rIFN-alpha-2a on the induction of CAs by BLM is mainly due to the stimulation of DNA synthesis and repair by the cytokine.  相似文献   

4.
In CHO and R1H cells thermotolerance was induced by a pre-incubation at 40 degrees C, by an acute heat shock at 43 degrees C followed by a time interval at 37 degrees C, and during continuous heating at 42 degrees C. Thermotolerance, which was tested at 43 degrees C, primarily causes an increase in D0 of the heat-response curve. The degree of maximum thermotolerance was found to be generally more pronounced in CHO than in R1H cells, but the time interval at 37 degrees C, as well as at 40 degrees C, to reach this maximum level was the same in both cell lines. CHO and R1H cells could be sensitized to 40 degrees C by a pre-treatment at 43 degrees C. When compared for the same survival rate after pre-treatment at 43 degrees C alone the degree of thermosensitization was about the same in both cell lines. In either cell line thermosensitization was found to be suppressed when cells were made thermotolerant by a previous incubation at 40 degrees C for 16 hours.  相似文献   

5.
The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37–BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.  相似文献   

6.
Mutational alteration of the BLM5 gene of the model eukaryote, Saccharomyces cerevisiae, confers extreme hypersensitivities to lethal effects of ionizing radiation, anticancer bleomycins and structurally-related phleomycins. Additional properties conferred by the blm5-1 mutation in haploid and diploid strains were investigated for the current report. Only one copy of blm5-1 together with the normal BLM5 allele was sufficient to produce mitotic and meiotic defects in diploids, and greatly increase killing by bleomycin beyond wild type levels. Mitotic growth rates of blm5-1/blm5-1 homozygous mutant strains were slower than wild type or BLM5/blm5-1 heterozygous strains at 30 degrees C, and growth was nearly completely inhibited at 37 degrees C. Meiosis was inhibited at 30 degrees C and 37 degrees C in mutant homozygotes, and at 37 degrees C in BLM5/blm5-1 heterozygotes, while meiosis occurred at equivalent frequencies in wild type strains at both temperatures. Surprisingly, mutant strains were found to associate extremely low quantities of [S-methyl-3H]bleomycin A2, in contrast to normal strains that associated quite high amounts. However, the fractions of the total associated radioactivities that were released from normal and blm5-1 cells were equivalent. These results suggested that the extremely high killing suffered by blm5-1 mutant strains in response to bleomycin treatments results from something other than increased intracellular drug concentrations.  相似文献   

7.
Bleomycin (BLM) induced chromosomal damage in G2 phase and its repair kinetics in normal human lymphocytes were studied following different treatment schedules. As a first step, a dose-response curve was obtained (concentrations of 5-50 micrograms/ml). For repair kinetics studies, blood samples were treated with BLM at a concentration of 20 micrograms/ml. Continuous treatment produced equal numbers of breaks per cell (br/c) when the cells were treated 3, 4 or 5 h before fixation. If the treatment time was extended to 6 h, the level of br/c was increased 2-fold (p < 0.001) as a result of an increased number of cells with more than 3 br/c. The curves obtained after pulse treatment showed maximal chromosome damage at time 3 (45 min BLM treatment, followed by 2 h repair in drug free medium). When the time after treatment was extended to 4 h (treatment time 5), a 50% reduction in chromosome damage was measured. It was found out that at treatment points 3, 4 and 5 the differences in breaks per cell at the different schedules applied were statistically highly significant. If caffeine (CAF) was added, the continuous treatment, BLM+CAF, induced a statistically significant increase in the frequency of br/c at every treatment point, but the shape of the curve illustrating the kinetics of chromosomal damage remained unchanged. Moreover, the addition of CAF at continuous BLM treatment brings the level of br/c close to that measured at the pulse BLM treatment except for treatment time 3. When applied in a combination with BLM, CAF considerably modified the kinetics of chromosome damage for a pulse (BLM alone) treatment. The possible reasons for the changes in the level of br/c as well as a tentative scheme for assessment of chromosome damage repair capacity after BLM treatment are discussed.  相似文献   

8.
Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 °C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells.  相似文献   

9.
A unique direct-view stereo electron microscope technique was used to visualize the structure and three-dimensional distributions of mitochondria in CHO cells in situ following hyperthermic treatments. Aberrations induced by various heating regimens were recorded. The protocol included a trypsin digestion that may have enhanced the expression of the initial heat damage. The developed damage was observed as increasing levels of mitochondrial distortion, swelling, and dissociation. Minimal damage was induced at 42 degrees C for exposures of up to 4 h, while significant damage was induced at 43 degrees C for exposures of more than 30 min and at 45 degrees C for exposures of more than 10 min. For moderate exposures, a partial recovery of mitochondrial integrity was observed when the heat treatment was followed by incubation at 37 degrees C for 24 h. Mitochondrial damage was related to the heat dose in that increasing treatment temperature resulted in greater damage, but when compared to cell survival the damage did not parallel cell killing under all time-temperature conditions.  相似文献   

10.
Potentiation of thermal injury in mouse cells by interferon   总被引:1,自引:0,他引:1  
Mouse cells, when exposed to high temperature (43 degrees), shut off overall protein synthesis and continue to synthesize "heat shock proteins". Such heat shocked cells, upon reincubation at 37 degrees C, recover and proliferate. However, when mouse cells are pretreated with mouse interferon (IFN) and then exposed to 43 degrees, more than 99% of the cell population fail to recover. Synthesis of the major heat shock protein is unaffected in cells treated with IFN. Experiments designed to assess the role of intracellular glutathione (GSH) during cells' recovery from hyperthermia indicated that there is an irreversible depletion of glutathione when IFN treated cells are heat shocked. Neither depletion of GSH, nor potentiation of thermal injury was observed in a IFN-resistant line of mouse cells.  相似文献   

11.
The effects of hyperthermia (42 degrees C) on 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-mediated DNA interstrand crosslink formation were investigated in 9L rat brain tumor cells using the technique of alkaline elution. When cells were treated with 60 microM BCNU for 1 hr at 37 degrees C and incubated for 6 hr in drug-free medium at 42 degrees C, there was a 50% increase in crosslinking; and when cells were treated at 42 degrees C and incubated at 37 degrees C, there was a 45% increase in crosslinking compared with the results for cells treated and incubated at 37 degrees C. When cells were treated and incubated at 42 degrees C, there was a 129% increase in DNA crosslinking. The same relative order of results was found for cell survival. These results suggest that hyperthermia can increase DNA interstrand crosslink formation and the consequent cell death through two independent mechanisms: an increase in the amount of initial alkylation because of the increased rate of hydrolysis of BCNU at higher temperatures, and the effect of heat on DNA structure that leads to an increase in the number of crosslinks formed.  相似文献   

12.
Irradiation (IR) can be used to treat cancer by inducing complex and irreparable DNA damage in the cancer cells, which may lead to their apoptotic death. However, little is known about the molecular mechanism of this DNA damage. Here, the non-small-cell lung cancer cell line A549 was treated with either X-ray or carbon ion combined with bleomycin (BLM). The cell survival rate, frequency of double-strand breaks (DSBs), dynamic changes in γH2AX, and p53 binding protein 1 (53BP1), and protein expression of Ku70, Rad51, and XRCC1 were determined by the clone formation assay, agarose gel electrophoresis, immunofluorescence, and western blot analysis. The results showed that the most obvious complex DSBs occurred in the carbon IR + BLM group. The number of γH2AX and 53BP1 foci in the 0.5 hr X-ray IR + BLM group was the highest (p < 0.001) among all the groups. γH2AX foci were detected in the nucleus at 0.5, 1, 2, and 4 hr, but were distributed throughout the cell at 6 hr after IR in the carbon ion IR + BLM group. The expression of Ku70 increased and XRCC1 decreased at 2 and 6 hr after IR. Our data indicate that a DNA damage frequency of 13.4/Mbp is caused by clustered DNA damage and further show a correlation between γH2AX, 53BP1, and XRCC1 levels and the extent of DNA damage. The results of this study provide insights into DNA damage recognition and a rationale for the clinical use of radiotherapy.  相似文献   

13.
14.
The effect of combined ultrasound and heat treatments on Chinese hamster multicellular spheroids of varying size was investigated using growth rate, single cell survival and ultrastructural damage as endpoints. Ultrasonic irradiation at 37 degrees C had no effect on the growth rate of 200-730 microns spheroids. Similarly there was no effect on the growth rate of 350 microns spheroids when irradiated during a 60 min exposure to 41.5 degrees C. However, spheroids of 200-700 mm diameter showed growth delay when held at 43 degrees C for 1 h. The effect was enhanced with concomitant ultrasound irradiation but was not dependent on spheroid size. When 200 and 400 microns spheroids held at 43 degrees C for 60 min were irradiated with different ultrasonic intensities a dose-dependent decrease in surviving fraction and a dose-dependent increase in growth delay was obtained. When surviving fraction was plotted as a function of growth delay a good correlation was obtained, suggesting that the combination of heat and ultrasound irradiation does not produce cytostasis in the surviving cells of either 200 or 400 microns spheroids. At the ultrastructural level increased cytoplasmic vacuolation was the only result of ultrasonic irradiation at 37 degrees C. Exposure to 43 degrees C for 60 min was required to elicit thermal damage. This took the form of membrane evagination at the spheroid surface, vacuolation of the cytoplasm, grouping of organelles around the periphery of the nucleus, and fragmentation of the nucleolus. These effects were enhanced with concomitant ultrasonic irradiation but other features were also noted, viz. disaggregation of polyribosomes, dilation of the rough endoplasmic reticulum and blebbing of the nuclear membrane. Damage was independent of spheroid size. These results are in agreement with previous data obtained from single-cell studies. Indicating that there is a non-thermal, non-cavitational component to the cell killing in multicellular spheroids resulting from combined heat and ultrasound treatment.  相似文献   

15.
Hyperthermia can modulate the action of many anticancer drugs, and DNA repair processes are temperature-dependent, but the character of this dependence in cancer and normal cells is largely unknown. This subject seems to be worth studying, because hyperthermia can assist cancer therapy. A 1-h incubation at 37 degrees C of normal human peripheral blood lymphocytes and human myelogenous leukemia cell line K562 with 0.5 microM doxorubicin gave significant level of DNA damage as assessed by the alkaline comet assay. The cells were then incubated in doxorubicin-free repair medium at 37 degrees C or 41 degrees C. The lymphocytes incubated at 37 degrees C needed about 60 min to remove completely the damage to their DNA, whereas at 41 degrees C the time required for complete repair was shortened to 30 min. There was also a difference between the repair kinetics at 37 degrees C and 41 degrees C in cancer cells. Moreover, the kinetics were different in doxorubicin-sensitive and resistant cells. Therefore, hyperthermia may significantly affect the kinetics of DNA repair in drug-treated cells, but the magnitude of the effect may be different in normal and cancer cells. These features may be exploited in cancer chemotherapy to increase the effectiveness of the treatment and reduce unwanted effects of anticancer drugs in normal cells and fight DNA repair-based drug resistance of cancer cells.  相似文献   

16.
Prostatic cancers are well-known to be sensitive to heat stress. However, the mechanism by which the cancer cells are killed by high temperature remains poorly understood. The present study was undertaken to determine the anti-proliferative effects of heat stress on the prostatic cancer cells in culture. Heat shock at 43 degrees C inhibited the cell growth of three different prostatic cell lines. Flow cytometrical analysis using BrdU and PI showed a decrease in the proportion of cells in an S phase, accompanied by cell accumulation in G1 and G2, in both JCA-1 and PC-3 but not in LNcap. Both JCA-1 and PC-3 presented a strong expression of hsp70 at 37 degrees C. The heat shock caused apparent enhancement of the expression of hsp70 through the cell cycle. A treatment at 43 degrees C for 8 hours resulted in not only an apparent increment of positive hsp70 cells, but cells with subdiploid DNA content in LNcap. Flow cytometrical analysis by FITC-labeled Annexin V showed increment of apoptotic cells at 43 degrees C for 8 hours in LNcap cells. The results suggest that apoptosis is an important pathway of heat-induced killing of these cells. In conclusion, the cell growth of prostatic cancers may be affected by the temperature through relationship of the cell cycle and hsp70.  相似文献   

17.
Intracellular particle movements, of both saltatory and streaming types, in HeLa S-3 cells were simultaneously interrupted after 1 h exposure of cells to 43 degrees C, within 10 min at 44 degrees C and within 5 min at 45 degrees C. Intracellular movement inhibited after 15 min at 44 degrees C and 10 min at 45 degrees C was not reversible in cells rescued at 37 degrees C. Brownian motion was not observed in heat-treated cells while they were maintained at elevated temperatures, but became pronounced in blebbing which occurred shortly after they were returned to 37 degrees C. Returning these cells to 45 degrees C intensified the Brownian activity inside blebs, and rapidly induced cell lysis. The same heat-treated cells were simultaneously studied by laser-Doppler microscopy, which confirmed: a) that flow (cytoplasmic streaming) is completely arrested at 44 degrees C within 10 min, b) flow recovered in 10-15 min in cells rescued after 10-15 min at 44 degrees C, c) submicroscopic particles down to the size of water molecules had faster self-diffusion coefficients at 44 degrees C than at 37 degrees C. Proton nmr studies on cells exposed from 4 to 45 degrees C gave corrected relaxation times T1 and T2 which rose with temperature in a predictable manner. Inhibition of cellular movement at elevated temperatures was not specifically attributable to the depletion of intracellular ATP levels.  相似文献   

18.
Chinese hamster ovary (CHO) cells became thermotolerant after treatment with either heat for 10 min at 45.5 degrees C or incubation in 100 microM sodium arsenite for 1 h at 37 degrees C. Thermotolerance was tested using heat treatment at 45 degrees C or 43 degrees C administered 6-12 h after the inducing agent. At 45 degrees C thermotolerance ratios at 10(-2) isosurvival levels were 4.2 and 3.8 for heat and sodium arsenite, respectively. Recovery from heat damage as measured by resumption of protein synthesis was more rapid in heat-induced thermotolerant cells than in either sodium arsenite-induced thermotolerant cells or nonthermotolerant cells. Differences in inhibition of protein synthesis between heat-induced thermotolerant cells and sodium arsenite-induced thermotolerant cells were also evident after test heating at 43 degrees C for 5 h. At this temperature heat-induced thermotolerant cells were protected immediately from inhibition of protein synthesis, whereas sodium arsenite-induced thermotolerant cells, while initially suppressed, gradually recovered within 24 h. Furthermore, adding cycloheximide during the thermotolerance development period greatly inhibited sodium arsenite-induced thermotolerance (SF less than 10(-6] but not heat-induced thermotolerance (SF = 1.7 X 10(-1] when tested with 43 degrees C for 5 h. Our results suggest that both the development of thermotolerance and the thermotolerant state for the two agents, while similar in terms of survival, differed significantly for several parameters associated with protein synthesis.  相似文献   

19.
S M Sebti  J C DeLeon  J S Lazo 《Biochemistry》1987,26(14):4213-4219
Bleomycin (BLM) hydrolase, a protective enzyme that inactivates the antitumor antibiotic BLM, was purified (6000-fold) to homogeneity from rabbit lungs by DEAE-Sephacel, phenyl-Sepharose chromatography, BLM-Sepharose affinity chromatography, and Mono Q fast protein liquid chromatography. The enzyme had a molecular mass of 250,000 daltons as demonstrated by Superose gel permeation chromatography and polyacrylamide gel electrophoresis (PAGE) under native conditions. Sodium dodecyl sulfate-PAGE revealed a single band of 50,000 daltons, suggesting a pentameric structure. The Km and Vmax for BLM A2 were 1.3 mM and 5.9 mumol mg-1 h-1, respectively. BLM hydrolase activity was labile, had a half-life of 25 min at 56 degrees C, 10 h at 37 degrees C, and 5 days at 4 degrees C, and was stabilized by 2 mM dithiothreitol. The enzyme had a pH optimum of 7.0-7.5 and was inhibited by N-ethylmaleimide, leupeptin, puromycin, and divalent cations such as Cu2+, Cd2+, Zn2+, and Co2+ but was unaffected by chelating agents. On the basis of Mono P chromatofocusing chromatography, three isoforms of BLM hydrolase (apparent pI's of 5.3, 4.5, and 4.3) were present in rabbit pulmonary cytosol. The elution profiles of BLM hydrolase from phenyl-Sepharose and Mono P chromatofocusing indicated that this enzyme is hydrophobic and acidic. This was confirmed by amino acid composition analysis, which demonstrated that 48% of the total amino acids of bleomycin hydrolase were hydrophobic and 37% were acidic.  相似文献   

20.
Recent studies show that during slow freezing of biological cells, the cells may be also injured by not only chemical damage but also mechanical damage induced by ice crystal compression. A new experimental procedure is developed to quantify cell destruction by deformation with two parallel surfaces. The viability of cells (prostatic carcinoma cells, 17.5 microns in mean diameter) is measured as a function of gap size ranging from 3.5 microns to 16.2 microns at 0 degree C, 23 degrees C and 37 degrees C. The viability at a smaller gap size is significantly lower at 37 degrees C than at 23 degrees C, while the difference between 0 degree C and 23 degrees C is much smaller. This suggests that deformation damage is related to the deformation of the cytoskeleton rather than the mechanical properties of the lipid membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号