首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione (GSH) protects liver microsomes against lipid peroxidation. This is probably due to the reduction of vitamin E radicals by GSH, a reaction catalyzed by a membrane-bound protein. Pretreatment of liver microsomes with 0.1 or 1mM 4-hydroxy-2,3-trans-nonenal (HNE), a major product of lipid peroxidation, reduces the GSH-dependent protection. GSH and vitamin E concentrations are not affected by this pretreatment. Pretreatment with 0.1 mM N-ethyl maleimide (NEM), a synthetic sulfhydryl reagent, resulted in a reduction similar to that with HNE of the GSH-dependent protection against lipid peroxidation. The reduction of the GSH-dependent protection by HNE and NEM is probably the result of inactivation of the membrane-bound protein by covalent binding to an essential SH group on the protein. If the GSH-dependent protection would proceed via the microsomal GSH transferase, pretreatment with NEM, which activates the microsomal GSH transferase, should enhance the GSH-dependent protection. Actually a decrease in the GSH-dependent protection is found. Apparently the GSH-dependent protection does not proceed via the microsomal GSH transferase. Also the microsomal phospholipase A2 is not involved, since addition of 0.1 mM mepacrine, an inhibitor of phospholipase A2, did not preclude the GSH-dependent protection. Once the process of lipid peroxidation, either in vivo or in vitro, has started, the protection of liver microsomes by GSH is less effective. This might be the result of formed HNE. In this way an endproduct of lipid peroxidation stimulates the process that generates this product.  相似文献   

2.
Transport of the co-substrate UDPGA (UDP-glucuronic acid) into the lumen of the endoplasmic reticulum is an essential step in glucuronidation reactions due to the intraluminal location of the catalytic site of the enzyme UGT (UDP-glucuronosyltransferase). In the present study, we have characterized the function of several NSTs (nucleotide sugar transporters) and UGTs as potential carriers of UDPGA for glucuronidation reactions. UDPGlcNAc (UDP-N-acetylglucosamine)-dependent UDPGA uptake was found both in rat liver microsomes and in microsomes prepared from the rat hepatoma cell line H4IIE. The latency of UGT activity in microsomes derived from rat liver and V79 cells expressing UGT1A6 correlated well with mannose-6-phosphatase latency, confirming the UGT in the recombinant cells retained a physiology similar to rat liver microsomes. In the present study, four cDNAs coding for NSTs were obtained; two were previously reported (UGTrel1 and UGTrel7) and two newly identified (huYEA4 and huYEA4S). Localization of NSTs within the human genome sequence revealed that huYEA4S is an alternatively spliced form of huYEA4. All the cloned NSTs were stably expressed in V79 (Chinese hamster fibroblast) cells, and were able to transport UDPGA after preloading of isolated microsomal vesicles with UDPGlcNAc. The highest uptake was seen with UGTrel7, which displayed a V(max) approx. 1% of rat liver microsomes. Treatment of H4IIE cells with beta-naphthoflavone induced UGT protein expression but did not affect the rate of UDPGA uptake. Furthermore, microsomes from UGT1-deficient Gunn rat liver showed UDPGA uptake similar to those from control rats. These data show that NSTs can act as UDPGA transporters for glucuronidation reactions, and indicate that UGTs of the 1A family do not function as UDPGA carriers in microsomes. The cell line H4IIE is a useful model for the study of UDPGA transporters for glucuronidation reactions.  相似文献   

3.
There is little difference in the extent of inactivation of beef liver microsomal vitamin K1 epoxide reductase by N-ethylmaleimide (NEM) whether or not the microsomes are pre-treated with dithiothreitol (DTT). The rat liver microsomal enzyme, however, is inactivated by NEM to a much greater extent if the microsomes are pre-treated with DTT. The beef liver enzyme activity is protected from NEM inactivation by the substrate, vitamin K1 epoxide. Ping-pong kinetics are exhibited by the beef liver enzyme. These results support a mechanism for vitamin K1 epoxide reductase in which the function of the required dithiol is to reduce an active site disulfide bond; however, the geometry of the active sites of the enzyme from rat and beef may be different.  相似文献   

4.
The disulfide reducing agent, dithiothreitol (DTT) and the sulfhydryl-modifying reagents p-chloromercuribenzenesulfonic acid and N-ethylmaleimide (NEM) were employed to assess the role of disulfide and sulfhydryl groups in organic cation transport. The transport of N1-[3H]methylnicotinamide (NMN), a prototypic organic cation, was examined employing brush-border membrane vesicles isolated from the outer cortex of canine kidneys. DTT inhibited NMN transport reversibly with an IC50 of 250 microM/mg of protein. 5 mM NMN protected against DTT inactivation. The specificity of substrate protection was demonstrated by showing that D-glucose had no effect on the DTT inactivation of NMN transport and conversely that NMN had no effect on the DTT inactivation of D-glucose transport. Disulfide bonds reduced by DTT could be reoxidized by washing with excess buffer or by addition of 0.02% H2O2 thereby restoring NMN transport. p-Chloromercuribenzenesulfonic acid reversibly inactivated NMN transport with an IC50 of 25 microM/mg of protein. 5mM NMN protected against inactivation. NEM irreversibly inactivated transport with an IC50 of 250 microM/mg of protein. The rate of NMN inactivation by NEM followed pseudo-first order reaction kinetics. A replot of the data gave a linear relationship between the apparent rate constants and the NEM concentration with a slope of 1.3. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of NEM inactivates 1 sulfhydryl group/active transport unit. The presence of 5 mM NMN affected the rate of NEM (2.5 mM) inactivation: the t1/2 values for inactivation in the presence and absence of substrate were 7.3 and 2.0 min, respectively. The results demonstrate an essential requirement for disulfide and sulfhydryl groups.  相似文献   

5.
UDP-glucuronosyltransferase 1A6 (UGT1A6) is a major isoform in the human liver that glucuronidates numerous drugs, environmental chemicals and endogenous substrates. In this study, human and cynomolgus monkey UGT1A6 cDNAs (humUGT1A6 and monUGT1A6, respectively) were cloned, and the corresponding proteins were heterologously expressed in yeast cells to identify the functions of primate UGT1A6s. The enzymatic properties of UGT1A6 proteins were characterized by the kinetic analysis of serotonin (5-hydroxytryptamine, 5-HT) and 4-methylumbelliferone (4-MU) glucuronidation. humUGT1A6 and monUGT1A6 showed 96% identity in their nucleotide and amino acid sequences. Immunoblotting analysis using an antibody raised against human UGT1A6 showed that protein staining intensities were different between human and cynomolgus monkey UGT1A6 enzymes in microsomal fractions from livers and yeast cells, although both enzymes were detectable. The apparent K(m) value (15 mM) for 5-HT glucuronidation of cynomolgus monkey liver microsomes was significantly higher than that (8.6mM) of human liver microsomes, whereas V(max) values were lower in cynomolgus monkeys (2.8 nmol/min/mg protein) than in humans (8.6 nmol/min/mg protein). No significant species difference was observed in K(m) (approximately 90 microM) or V(max) (approximately 25 nmol/min/mg protein) values for liver microsomal 4-MU glucuronidation. In yeast cell microsomes, K(m) values (approximately 6mM) for 5-HT glucuronidation by recombinant UGT1A6s were similar, while a V(max) value (0.1nmol/min/mg protein) of monUGT1A6 was significantly lower than that (0.7 nmol/min/mg protein) of humUGT1A6. In 4-MU glucuronidation, both K(m) (210 microM) and V(max) (3.5 nmol/min/mg protein) values of monUGT1A6 were significantly higher than those of humUGT1A6 (K(m), 110 microM; V(max), 1.5nmol/min/mg protein). These findings suggest that the enzymatic properties of UGT1A6 were extensively different between humans and cynomolgus monkeys, although humUGT1A6 and monUGT1A6 showed high homology at the amino acid level. The information gained in this study should help with in vivo extrapolation and to assess the toxicity of xenobiotics.  相似文献   

6.
The middle T antigen (MT Ag) encoded by polyoma virus has an associated protein kinase activity which transfers a phosphoryl group from ATP or GTP to a tyrosine residue on MT Ag in immunoprecipitates formed between polyoma virus-infected or transformed cell extracts and serum from animals bearing polyoma-induced tumors. Incubation of such immunoprecipitates or polyoma-transformed cell extracts prior to immunoprecipitation with the sulfhydryl reagent, N-ethylmaleimide (NEM), resulted in a significant inhibition of MT Ag-associated kinase activity. Inactivation of this enzyme activity by NEM was found to be dependent upon the incubation pH, time of incubation, and NEM concentration. ATP, GTP, and ADP in the presence of Mg2+ were found to decrease the rate of NEM-mediated inactivation of MT Ag-associated kinase activity, while CTP and UTP did not detectably alter the rate of enzyme inhibition by NEM. These results suggest that the MT Ag-associated kinase possesses at least one NEM-sensitive sulfhydryl group essential for phosphotransferase activity which may be present at or near the enzyme catalytic site.  相似文献   

7.
The distribution of free thiol groups associated with the membrane proteins of the purified pig gastric microsomal vesicles was quantified, and the relation of thiol groups to the function of the gastric (H+ + K+)-transporting ATPase system was investigated. Two different thiol-specific agents, carboxypyridine disulphide (CPDS) and N-(1-naphthyl)maleimide (NNM) were used for the study. The structure-function relationship of the membrane thiol groups was studied after modification by the probes under various conditions, relating the inhibition of the (H+ + K+)-transporting ATPase to the ATP-dependent H+ accumulation by the gastric microsomal vesicles. On the basis of the extent of stimulation of the microsomal (H+ + K+)-transporting ATPase in the presence and absence of valinomycin (val) about 85% of the vesicles were found to be intact. CPDS at 1 mM completely inhibits the valinomycin-stimulated ATPase and the associated p-nitrophenyl phosphatase with a concomitant inhibition of vesicular H+ uptake. Both the enzyme and dye-uptake activities were fully protected against CPDS inhibition when the treatment with CPDS was carried out in the presence of ATP. ATP also offered protection (about 65%) against NNM inhibition of the (H+ + K+)-transporting ATPase system and vesicular H+ uptake. Under similar conditions ATP also protected about 10 and 6 nmol of thiol groups/mg of protein respectively from CPDS and NNM reaction. Our data suggest that the thiol groups on the outer surface of the vesicles are primarily involved in gastric (H+ + K+)-transporting ATPase function. Furthermore, at least about 15% of the total microsomal thiol groups appear to be associated with the ATPase system. The data have been discussed in terms of the structure-function relationship of gastric microsomes.  相似文献   

8.
S A Adam  L Gerace 《Cell》1991,66(5):837-847
We have purified two major polypeptides of 54 and 56 kd from bovine erythrocytes that specifically bind the nuclear location sequence (NLS) of the SV40 large T antigen. When added to a permeabilized cell system for nuclear import, the purified proteins increase by 2- to 3-fold the nuclear accumulation of a fluorescent protein containing the large T antigen NLS. The import stimulation is saturable and dependent upon the presence of cytosol. Nuclear protein accumulation in vitro is sensitive to inactivation by N-ethylmaleimide (NEM). NEM inactivation can be overcome by addition of the purified NLS-binding proteins to the import system. NEM treatment of the purified proteins abolishes their ability to stimulate import but does not affect NLS binding. Our results indicate that the NLS-binding proteins are NEM-sensitive receptors for nuclear import. At least one other NEM-sensitive cytosolic activity and an NEM-insensitive cytosolic activity are also necessary for protein import in vitro.  相似文献   

9.
The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.  相似文献   

10.
Effect of thiols on lipid peroxidation in rat liver microsomes   总被引:1,自引:0,他引:1  
The stimulatory or inhibitory effects of various thiol compounds on in vitro lipid peroxidation by iron-ascorbate in rat liver microsomes were determined. Glutathione had no measurable pro-oxidant capacity, in contrast, it protected against lipid peroxidation. N-Acetyl l-cysteine and S-methyl-glutathione had no effect on in vitro lipid peroxidation. l-Cysteine stimulated lipid peroxidation and also of d-penicillamine and dl-dithiothreitol the pre-oxidant capacity predominated the anti-oxidant capacity. Cysteamine afforded a pronounced protection against in vitro lipid peroxidation. In contrast to the labile character of the glutathione dependent protection, the protection by cysteamine was not affected by heat-pretreatment of the liver microsomes or alkylating protein sulfhydryl groups by N-ethyl maleimide. Again in contrast to glutathione, the protection against in vitro microsomal lipid peroxidation by cysteamine was not reduced after in vivo lipid peroxidation induced by CC14. This suggests that even after the process of lipid peroxidation has been started, administration of cysteamine might still be beneficial.  相似文献   

11.
Both purified and functionally reconstituted bovine heart mitochondrial transhydrogenase were treated with various sulfhydryl modification reagents in the presence of substrates. In all cases, NAD+ and NADH had no effect on the rate of inactivation. NADP+ protected transhydrogenase from inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in both systems, while NADPH slightly protected the reconstituted enzyme but stimulated inactivation in the purified enzyme. The rate of N-ethylmaleimide (NEM) inactivation was enhanced by NADPH in both systems. The copper-(o-phenanthroline)2 complex [Cu(OP)2] inhibited the purified enzyme, and this inhibition was substantially prevented by NADP+. Transhydrogenase was shown to undergo conformational changes upon binding of NADP+ or NADPH. Sulfhydryl quantitation with DTNB indicated the presence of two sulfhydryl groups exposed to the external medium in the native conformation of the soluble purified enzyme or after reconstitution into phosphatidylcholine liposomes. In the presence of NADP+, one sulfhydryl group was quantitated in the nondenatured soluble enzyme, while none was found in the reconstituted enzyme, suggesting that the reactive sulfhydryl groups were less accessible in the NADP+-enzyme complex. In the presence of NADPH, however, four sulfhydryl groups were found to be exposed to DTNB in both the soluble and reconstituted enzymes. NEM selectively reacted with only one sulfhydryl group of the purified enzyme in the absence of substrates, but the presence of NADPH stimulated the NEM-dependent inactivation of the enzyme and resulted in the modification of three additional sulfhydryl groups. The sulfhydryl group not modified by NEM in the absence of substrates is not sterically hindered in the native enzyme as it can still be quantitated by DTNB or modified by iodoacetamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
7-Azido-4-methylcoumarin (AzMC) is a fluorescent photoactive compound structurally related to 4-methylumbelliferone (4-MU), a marker substrate of the human liver recombinant UDP-glucuronosyltransferase (UGT) 1A6. AzMC was synthesized and utilized to label the substrate binding site of UGT1A6. AzMC exhibits a fluorescence spectrum with maximum excitation and emission wavelengths of 380 and 442 nm, respectively. Upon irradiation, the probe irreversibly inhibited glucuronidation activity measured with para-nitrophenol (pNP) as substrate and interacted with UGT1A6 according to a saturable process indicative of reversible binding before covalent incorporation of the photoaffinity label. This inhibition was both time and concentration dependent and led to the calculation of an inhibition constant, k(2) = 0.113 mM min(-1), and dissociation constant, K(d) = 2.89 mM, for the reaction. Partial photoinactivation of UGT1A6 with AzMC revealed that the probe decreased the apparent V(max) of the pNP glucuronidation reaction, but not the K(m). Moreover, inhibition was partially prevented by 1-naphthol, a surrogate substrate for the enzyme, or by preincubation with an active-site directed inhibitor, 5'-O-[[(2-decanoylamino-3-phenyl-propyloxycarbonyl)amino]-su lfonyl]-2 ',3'-O-isopropylideneuridine. In contrast, UDP-glucuronic acid (UDP-GlcUA) did not have any protective effect against photoinactivation and AzMC did not affect the photoaffinity labeling of UGT1A6 by 5-[beta-(32)P]N(3)UDP-GlcUA, a photoaffinity analog of UDP-GlcUA. Additionally, in the absence of irradiation, AzMC was found to be a competitive inhibitor of 4MU glucuronidation. Collectively, these results strongly indicate that AzMC specifically binds to the UGT1A6 aglycon binding site. Amino acid alignment of phenol-binding proteins revealed a conserved motif, YXXXKXXPXP. It is possible that this motif is involved in phenol binding to UGT1A6 and other phenol-accepting proteins.  相似文献   

13.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver microsomes was investigated. The presence of regucalcin (0.1-1.0 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the microsomes. Thapsigargin (10(-6) M), a specific inhibitor of microsomal Ca(2+) pump enzyme (Ca(2+)-ATPase), clearly inhibited regucalcin (0.5 microM)-increased microsomal Ca(2+)-ATPase activity. Liver microsomal Ca(2+)-ATPase activity was markedly decreased by N-ethylmaleimide (NEM; 2.5 mM), while the activity was clearly elevated by dithiothreitol (DTT; 2.5 mM), indicating that the sulfhydryl (SH) group of the enzyme is an active site. The effect of regucalcin (0.5 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of NEM (2.5 mM) or digitonin (10(-2) %), a solubilizing reagent of membranous lipids. Moreover, the effect of regucalcin on enzyme activity was seen in the presence of Ca(2+) ionophore (A23187; 10(-7) M). The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver microsomes, and that the protein may act the SH groups of microsomal Ca(2+)-ATPase.  相似文献   

14.
Escherichia coli mannitol specific EII in membrane vesicles can be inhibited by the action of the oxidizable substrate-reduced phenazine methosulfate (PMS) in a manner similar to E. coli enzyme IIGlc [Robillard, G. T., & Konings, W. (1981) Biochemistry 20, 5025-5032]. The fact that reduced PMS and various oxidizing agents protect the enzyme from inactivation by the sulfhydryl reagents N-ethylmaleimide and bromopyruvate suggests that the active form possesses a dithiol which can be protected by conversion to a disulfide. The sulfhydryl-disulfide distribution has been examined in purified EIImtl by labeling studies with N-[1-14C]ethylmaleimide ( [14C]NEM). EIImtl can be alkylated at three positions per peptide chain. When alkylation takes place in 8 M urea, only two positions are labeled. The third position becomes labeled in urea only after treatment with DTT, suggesting that the native enzyme is composed of two subunits linked by a disulfide bridge. The remaining two sulfhydryl groups per peptide chain appear to undergo changes in oxidation state as indicated by the following results. (1) Treatment of the active enzyme with NEM leads to complete inactivation and incorporation of 1 mol of [14C]NEM per peptide chain. Oxidizing agents protect the activity and prevent labeling presumably by forming a disulfide. (2) Phosphorylating the enzyme (one phosphoryl group per peptide chain) fully protects the activity, but 1 mol of NEM per peptide chain is still incorporated. Subsequent dephosphorylation by adding mannitol causes a second mole of [14C]NEM to be incorporated and results in complete inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
D W Pettigrew 《Biochemistry》1986,25(16):4711-4718
Glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and by N-ethylmaleimide (NEM) in 0.1 M triethanolamine at pH 7 and 25 degrees C. The inactivation by DTNB is reversed by dithiothreitol. In the cases of both reagents, the kinetics of activity loss are pseudo first order. The dependencies of the rate constants on reagent concentration show that while the inactivation by NEM obeys second-order kinetics (k2app = 0.3 M-1 s-1), DTNB binds to the enzyme prior to the inactivation reaction; i.e., the pseudo-first-order rate constant shows a hyperbolic dependence on DTNB concentration. Complete inactivation by each reagent apparently involves the modification of two sulfhydryl groups per enzyme subunit. However, analysis of the kinetics of DTNB modification, as measured by the release of 2-nitro-5-thiobenzoate, shows that the inactivation is due to the modification of one sulfhydryl group per subunit, while two other groups are modified 6 and 15 times more slowly. The enzyme is protected from inactivation by the ligands glycerol, propane-1,2-diol, ATP, ADP, AMP, and cAMP but not by Mg2+, fructose 1,6-bisphosphate, or propane-1,3-diol. The protection afforded by ATP or AMP is not dependent on Mg2+. The kinetics of DTNB modification are different in the presence of glycerol or ATP, despite the observation that the degree of protection afforded by both of these ligands is the same.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Incubation of rat adipocytes with 1 microM-noradrenaline caused a decrease in both the N-ethylmaleimide-sensitive (microsomal) and N-ethylmaleimide-insensitive (mitochondrial) glycerol phosphate acyltransferase activities measured in homogenates from freeze-stopped cells. The effects of noradrenaline on glycerol phosphate acyltransferase activity were apparent over a wide range of concentrations of glycerol phosphate and palmitoyl-CoA. The effect of noradrenaline was reversed within cells by the subsequent addition of insulin or propranolol. Inclusion of albumin in homogenization buffers abolished the effect of noradrenaline on the N-ethylmaleimide-sensitive activity. The effect of noradrenaline on the N-ethylmaleimide-insensitive (mitochondrial) activity was, however, not abolished by inclusion of albumin in buffers for preparation of homogenates from freeze-stopped cells. Inclusion of fluoride in homogenization buffers did not alter the observed effect of noradrenaline. The inactivating effect of noradrenaline persisted through the subcellular fractionation procedures used to isolate adipocyte microsomes (microsomal fractions). The effect of noradrenaline on mitochondrial glycerol phosphate acyltransferase did not persist through subcellular fractionation. Noradrenaline treatment of cells significantly decreased the Vmax. of glycerol phosphate acyltransferase in isolated microsomes without changing the activity of NADPH-cytochrome c reductase. Glycerol phosphate acyltransferase activity in microsomes from noradrenaline-treated cells is unstable, being rapidly lost on incubation at 30 degrees C. Bivalent metal ions (Mg2+, Ca2+) or post-microsomal supernatant protected against this inactivation. Glycerol phosphate acyltransferase activity in microsomes from noradrenaline-treated cells could not be re-activated by incubation with either alkaline phosphatase or phosphoprotein phosphatase-1. Addition of cyclic AMP-dependent protein kinase catalytic subunits to adipocyte microsomes incubated with [gamma-32P]ATP considerably increased the incorporation of 32P into microsomal protein, but did not cause inactivation of glycerol phosphate acyltransferase. These findings provide no support for the proposal that inactivation of adipocyte microsomal glycerol phosphate acyltransferase by noradrenaline is through a phosphorylation type of covalent modification.  相似文献   

17.
Import of the small precursor protein preprocecropin A (ppcec A) into dog pancreas microsomes under post-translational conditions does not involve the ribonucleoparticles, signal recognition particle and ribosome, and their receptors on the microsomal surface, docking protein and ribosome receptor. In this study, we attempted to obtain direct evidence for the involvement of proteinaceous membrane components in this alternative import mechanism by utilizing various sulfhydryl-modifying reagents (N-ethylmaleimide (NEM), N-iodoacetylaminoethyl-5-naphthylamine-1- sulphonic acid (AEDANS) and iodoacetamide (IAA]. As a result of observing the inhibitory effect of 2 reagents (NEM and AEDANS) on the microsomes with respect to ppcec A-import, we concluded that there is at least one membrane protein with a cytoplasmically exposed sulfhydryl involved in ppcep A-import. This membrane protein(s) is (are) distinct from membrane proteins which are known to be involved in protein import, such as the signal peptidase and the so-called signal sequence receptor.  相似文献   

18.
S R Earle  S G O'Neal  R R Fisher 《Biochemistry》1978,17(22):4683-4690
Chemical-modification studies on submitochondrial particle pyridine dinucleotide transhydrogenase (EC 1.6.1.1) demonstrate the presence of one class of sulfhydryl group in the nicotinamide adenine dinucleotide phosphate (NADP) site and another peripheral to the active site. Reaction of the peripheral sulfhydryl group with N-ethylmaleimide, or both classes with 5,5'-dithiobis(2-nitrobenzoic acid), completely inactivated transhydrogenase. NADP+ or NADPH nearly completely protected against 5,5'-dithiobis(2-nitrobenzoic acid) inactivation and modification of both classes of sulfhydryl groups, while NADP+ only partially protected against and NADPH substantially stimulated N-ethylmaleimide inactivation. Methyl methanethiolsulfonate treatment resulted in methanethiolation at both classes of sulfhydryl groups, and either NADP+ or NADPH protected only the NADP site group. S-Methanethio and S-cyano transhydrogenases were active derivatives with pH optima shifted about 1 unit lower than that of the native enzyme. These experiments indicate that neither class of sulfhydryl group is essential for transhydrogenation. Lack of involvement of either sulfhydryl group in energy coupling to transhydrogenation is suggested by the observations that S-methanethio transhydrogenase is functional in (a) energy-linked transhydrogenation promoted by phenazine methosulfate mediated ascorbate oxidation and (b) the generation of a membrane potential during the reduction of NAD+ by reduced nicotinamide adenine dinucleotide phosphate (NADPH).  相似文献   

19.
Reactions catalyzed by NAD-linked malic enzyme from Escherichia coli were investigated. In addition to L-malate oxidative decarboxylase activity (Activity 1) and oxaloacetate decarboxylase activity (Activity 2), the enzyme exhibited oxaloacetate reductase activity (Activity 3) and pyruvate reductase activity (Activity 4). Optimum pH's for Activities 3 and 4 were 4.0 and 5.0, and their specific activities were 1.7 and 0.07, respectively. Upon reaction with N-ethylmaleimide (NEM), Activity 1 decreased following pseudo-first order kinetics. Activity 2 decreased in parallel with Activity 1, while Activities 3 and 4 were about ten-fold enhanced by NEM modification. Modification of one or two sulfhydryl groups per enzyme subunit caused an alteration of the activities. Tartronate, a substrate analog, NAD+, and Mn2+ protected the enzyme against the modification. The Km values for the substrates and coenzymes were not significantly affected by NEM modification. Similarly, other sulfhydryl reagents such as p-hydroxymercuribenzoate (PMB), 5,5'-dithiobis(2-nitrobenzoate) (DTNB), and iodoacetate inhibited the decarboxylase activities and activated the reductase activities to various extents. Modification of the enzyme with PMB or DTNB was reversed by the addition of a sulfhydryl compound such as dithiothreitol or 2-mercaptoethanol. Based on the above results, the mechanism of the alteration of enzyme activities by sulfhydryl group modification is discussed.  相似文献   

20.
Testosterone and epitestosterone are secreted mainly as glucuronide metabolites and the urinary ratio of testosterone glucuronide to epitestosterone glucuronide, often called T/E, serves as a marker for possible anabolic steroids abuse by athletes. UDP-glucuronosyltransferase (UGT) 2B17 is the most important catalyst of testosterone glucuronidation. The T/E might be affected by drugs that interact with UGT2B17, or other enzymes that contribute to testosterone glucuronidation. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used by sportsmen and we have examined the effect of two NSAIDs, diclofenac and ibuprofen, on testosterone and epitestosterone glucuronidation in human liver microsomes. In parallel, we have studied the inhibitory effect of these NSAIDs on recombinant UGT2B17 and UGT2B15, as well as other human hepatic UGTs that revealed low but detectable testosterone glucuronidation activity, namely UGT1A3, UGT1A4, UGT1A9 and UGT2B7. Both diclofenac and ibuprofen inhibited testosterone glucuronidation in microsomes, as well as UGT2B15 and UGT2B17. Interestingly, UGT2B15 was more sensitive than UGT2B17 to the two drugs, particularly to ibuprofen. Human liver microsomes lacking functional UGT2B17 exhibited significantly higher sensitivity to ibuprofen, suggesting that UGT2B15 plays a major role in the residual testosterone glucuronidation activity in UGT2B17-deficient individuals. Nonetheless, a minor contribution of other UGTs, particularly UGT1A9, to testosterone glucuronidation in such individuals cannot be ruled out at this stage. The epitestosterone glucuronidation activity of human liver microsomes was largely insensitive to ibuprofen and diclofenac. Taken together, the results highlight potential interactions between NSAIDs and androgen glucuronidation with possible implications for the validity of doping tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号