首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

2.
The pH variation of the kinetic parameters for the oxidative decarboxylation of L-malate and decarboxylation of oxalacetate catalyzed by malic enzyme has been used to gain information on the catalytic mechanism of this enzyme. With Mn2+ as the activator, an active-site residue with a pK of 5.4 must be protonated for oxalacetate decarboxylation and ionized for the oxidative decarboxylation of L-malate. With Mg2+ as the metal, this pK is 6, and, at high pH, V/K for L-malate decreases when groups with pKs of 7.8 and 9 are deprotonated. The group at 7.8 is a neutral acid (thought to be water coordinated to Mg2+), while the group at 9 is a cationic acid such as lysine. The V profile for reaction of malate shows these pKs displaced outward by 1.4 pH units, since the rate-limiting step is normally TPNH release, and the chemical reaction, which is pH sensitive, is 25 times faster. TPN binding is decreased by ionization of a group with pK 9.3 or protonation of a group with pK 5.3. The pH variation of the Km for Mg shows that protonation of a group with pK 8.7 (possibly SH) decreases metal binding in the presence of malate by a factor of 1400, and in the absence of malate by a factor of 20. A catalytic mechanism is proposed in which hydride transfer is accompanied by transfer of a proton to the group with pK 5.4-6, and enolpyruvate is protonated by water coordinated to the Mg2+ (pK 7.8) after decarboxylation and release of CO2.  相似文献   

3.
Karsten WE  Tipton PA  Cook PF 《Biochemistry》2002,41(40):12193-12199
Tartrate dehydrogenase catalyzes the divalent metal ion- and NAD-dependent oxidative decarboxylation of D-malate to yield CO(2), pyruvate, and NADH. The enzyme also catalyzes the metal ion-dependent oxidation of (+)-tartrate to yield oxaloglycolate and NADH. pH-rate profiles and isotope effects were measured to probe the mechanism of this unique enzyme. Data suggest a general base mechanism with likely general acid catalysis in the oxidative decarboxylation of D-malate. Of interest, the mechanism of oxidative decarboxylation of D-malate is stepwise with NAD(+) or the more oxidizing thio-NAD(+). The mechanism does not become concerted with the latter as observed for the malic enzyme, which catalyzes the oxidative decarboxylation of L-malate [Karsten, W. E., and Cook, P. F. (1994) Biochemistry 33, 2096-2103]. It appears the change in mechanism observed with malic enzyme is specific to its transition state structure and not a generalized trait of metal ion- and NAD(P)-dependent beta-hydroxy acid oxidative decarboxylases. The V/K(malate) pH-rate profile decreases at low and high pH and exhibits pK(a) values of about 6.3 and 8.3, while that for V/K(tartrate) (measured from pH 7.5 to pH 9) exhibits a pK(a) of 8.6 on the basic side. A single pK(a) of 6.3 is observed on the acid side of the V(max) pH profile, but the pK(a) seen on the basic side of the V/K pH profiles is not observed in the V(max) pH profiles. Data suggest the requirement for a general base that accepts a proton from the 2-hydroxyl group of either substrate to facilitate hydride transfer. A second enzymatic group is also required protonated for optimum binding of substrates and may also function as a general acid to donate a proton to the enolpyruvate intermediate to form pyruvate. The (13)C isotope effect, measured on the decarboxylation of D-malate using NAD(+) as the dinucleotide substrate, decreases from a value of 1.0096 +/- 0.0006 with D-malate to 1.00787 +/- 0.00006 with D-malate-2-d, suggesting a stepwise mechanism for the oxidative decarboxylation of D-malate. Using thio-NAD(+) as the dinucleotide substrate the (13)C isotope effects are 1.0034 +/- 0.0007 and 1.0027 +/- 0.0002 with D-malate and D-malate-2-d, respectively.  相似文献   

4.
The pH dependence of the kinetic parameters and the primary deuterium isotope effects with nicotinamide adenine dinucleotide (NAD) and also thionicotinamide adenine dinucleotide (thio-NAD) as the nucleotide substrates were determined in order to obtain information about the chemical mechanism and location of rate-determining steps for the Ascaris suum NAD-malic enzyme reaction. The maximum velocity with thio-NAD as the nucleotide is pH-independent from pH 4.2 to 9.6, while with NAD, V decreases below a pK of 4.8. V/K for both nucleotides decreases below a pK of 5.6 and above a pK of 8.9. Both the tartronate pKi and V/Kmalate decrease below a pK of 4.8 and above a pK of 8.9. Oxalate is competitive vs. malate above pH 7 and noncompetitive below pH 7 with NAD as the nucleotide. The oxalate Kis increases from a constant value above a pK of 4.9 to another constant value above a pK of 6.7. The oxalate Kii also increases above a pK of 4.9, and this inhibition is enhanced by NADH. In the presence of thio-NAD the inhibition by oxalate is competitive vs. malate below pH 7. For thio-NAD, both DV and D(V/K) are pH-independent and equal to 1.7. With NAD as the nucleotide, DV decreases to 1.0 below a pK of 4.9, while D(V/KNAD) and D(V/Kmalate) are pH-independent. Above pH 7 the isotope effects on V and the V/K values for NAD and malate are equal to 1.45, the pH-independent value of DV above pH 7. From the above data, the following conclusions can be made concerning the mechanism for this enzyme. Substrates bind to only the correctly protonated form of the enzyme. Two enzyme groups are necessary for binding of substrates and catalysis. Both NAD and malate are released from the Michaelis complex at equal rates which are equal to the rate of NADH release from E-NADH above pH 7. Below pH 7 NADH release becomes more rate-determining as the pH decreases until at pH 4.0 it completely limits the overall rate of the reaction.  相似文献   

5.
Human malic enzyme was studied by steady state kinetics, deuterium isotope effects, and 13C isotope effects with both the physiological dinucleotide cofactor and several alternate cofactors. The log V vs pH profile with NAD revealed two pK(a) values too close to be separately determined, but with an average value of 7.33. The log V/K vs pH profile with NAD revealed two pK(a) values at 7.4 and 5.6. Deuterium and 13C isotope effects indicate that the mechanism of human malic enzyme is stepwise with both NAD and epsilonNAD, but that hyperconjugation in the transition state for hydride transfer is detectable only with the former. With thioNAD and APAD, the isotope effects do not clearly indicate whether the mechanism is stepwise or concerted. The intrinsic 13C isotope effect for decarboxylation was calculated to be 1.0485 by measurement of the partition ratio of oxaloacetate in the presence of NADH and human malic enzyme (decarboxylation to pyruvate/reduction to malate = 2.33). The isotope effect and partitioning data suggest that the energy barrier for decarboxylation of oxaloacetate is not as high relative to the barrier for reduction of oxaloacetate as with the chicken liver enzyme.  相似文献   

6.
A kinetic study of "malic' enzyme (EC 1.1.1.40) from potato suggests that the mechanism is Ordered Bi Ter with NADP+ binding before malate, and NADPH binding before pyruvate and HCO3-. The analysis is complicated by the non-linearity that occurs in some of the plots. meso-Tartrate is shown to inhibit the oxidative decarboxylation of malate but to activate the reductive carboxylation of pyruvate. To explain these unidirectional effects it is suggested that the control site of "malic' enzyme binds organic acids (including meso-tartrate) which activate the enzyme. meso-Tartrate, however, competes with malate for the active site and thus inhibits the oxidative decarboxylation of malate. Because meso-tartrate does not compete effectively with pyruvate for enzyme-NADPH, its binding at the control site leads to a stimulation of the carboxylation of pyruvate. A similar explanation is advanced for the observation that malic acid stimulates its own synthesis.  相似文献   

7.
In human liver, almost 90% of malic enzyme activity is located within the extramitochondrial compartment, and only approximately 10% in the mitochondrial fraction. Extramitochondrial malic enzyme has been isolated from the post-mitochondrial supernatant of human liver by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, ADP-Sepharose-4B and Sephacryl S-300 to apparent homogeneity, as judged from polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was 56 mumol.min-1.mg protein-1, which corresponds to about 10,000-fold purification. The molecular mass of the native enzyme determined by gel filtration is 251 kDa. SDS/polyacrylamide gel electrophoresis showed one polypeptide band of molecular mass 63 kDa. Thus, it appears that the native protein is a tetramer composed of identical-molecular-mass subunits. The isoelectric point of the isolated enzyme was 5.65. The enzyme was shown to carboxylate pyruvate with at least the same rate as the forward reaction. The optimum pH for the carboxylation reaction was at pH 7.25 and that for the NADP-linked decarboxylation reaction varied with malate concentration. The Km values determined at pH 7.2 for malate and NADP were 120 microM and 9.2 microM, respectively. The Km values for pyruvate, NADPH and bicarbonate were 5.9 mM, 5.3 microM and 27.9 mM, respectively. The enzyme converted malate to pyruvate (at optimum pH 6.4) in the presence of 10 mM NAD at approximately 40% of the maximum rate with NADP. The Km values for malate and NAD were 0.96 mM and 4.6 mM, respectively. NAD-dependent decarboxylation reaction was not reversible. The purified human liver malic enzyme catalyzed decarboxylation of oxaloacetate and NADPH-linked reduction of pyruvate at about 1.3% and 5.4% of the maximum rate of NADP-linked oxidative decarboxylation of malate, respectively. The results indicate that malic enzyme from human liver exhibits similar properties to the enzyme from animal liver.  相似文献   

8.
Liu D  Hwang CC  Cook PF 《Biochemistry》2002,41(40):12200-12203
The NAD-malic enzyme from Ascaris suum will utilize L-aspartate, (2S,3R)-tartrate, and meso-tartrate as substrates with V/K values 10(-4)-10(-5) with respect to malate. There is a strict requirement for the 2S stereochemistry for all of these reactants. Since aspartate is unique as an amino acid reactant for malic enzyme, it was informative to determine the details of its mechanism of oxidative decarboxylation. The initial rate of NADH appearance is directly proportional to the concentration of aspartate, and saturation is difficult to achieve. The pH dependence of V/K(aspartate)E(t) shows a decrease at low pH, giving a pK of 5.7. The pH-independent value of V/K(aspartate)E(t) is 3 M(-1) s(-1), 12500-fold lower than that obtained with L-malate. The dissociation constant for aspartate as a competitive inhibitor of malate is 60 mM at neutral pH, allowing an estimate of about 0.18 s(-1) for V/E(t) with L-aspartate compared to a value of 39 s(-1) obtained with L-malate. The deuterium isotope effect on V/K(aspartate) is pH independent over the range 5.1-6.9 with an average value of 3.3. Data suggest that the monoanion of L-aspartate binds to enzyme and that the same general base, general acid mechanism that is responsible for the oxidative decarboxylation of malate to pyruvate applies to the oxidative decarboxylation of aspartate to iminopyruvate. In addition, the oxidation step appears to be largely rate determining with aspartate as the substrate.  相似文献   

9.
Regulation of `malic'' enzyme of Solanum tuberosum by metabolites   总被引:5,自引:1,他引:4       下载免费PDF全文
A purification of ;malic' enzyme from potato is described. The purified enzyme is specific for NADP and requires a bivalent cation for activity. At pH values below 7 the plot of rate versus malate concentration approximates to normal Michaelis-Menten kinetics. At pH values above 7 the plot of rate versus malate concentration is sigmoid. A number of dicarboxylic acids activate the enzyme and remove the sigmoidicity. The enzyme is inhibited by phosphate, triose phosphates and AMP. In general, effectors of the oxidative decarboxylation of malate behave in the same manner in the reductive carboxylation of pyruvate. The response of the enzyme to energy charge is reported and the physiological significance of the response to metabolites is discussed in relation to the proposed role of the enzyme in the control of pH.  相似文献   

10.
Steady-state kinetic studies with differing divalent metals ions have been carried out on the pyruvate kinase-catalyzed, divalent cation-dependent decarboxylation of oxalacetate to probe the role of the divalent metal ion in this reaction. With either Mn2+ or Co2+, initial velocity patterns show that the divalent metal ion is bound to the enzyme in a rapid equilibrium prior to the addition of oxalacetate. Further, there is no change in the initial velocity patterns or the kinetic parameters in the presence or absence of K+, indicating that K+ is not required for oxalacetate decarboxylation. Dead-end inhibition of the decarboxylation reaction by the physiological substrate phosphoenolpyruvate indicates that phosphoenolpyruvate binds only to the enzyme-metal ion complex and not to free enzyme. The pKi values for both Mn2+ and Co2+ decrease below a pK of 7.0, and increase above a pK of 8.9. Since these pK values are the same for both ions, both of the observed pK values must be attributable to enzymatic residues. The pK of 7.0 is presumably that of a ligand to the metal ion, while the pK of 8.9 is probably that of the lysine involved in enolization of pyruvate in the normal physiological reaction. However, with Co2+ as divalent cation, the V for oxalacetate decreases above a pK of 8.0, the V/K decreases above two pK values averaging 7.8, and the pKi for oxalate decreases above a single pK of 7.3. These data indicate that metal-coordinated water is displaced during the binding of substrates or inhibitors and the other pK value observed in both V and V/K pH profiles (pK of 8.3 with Co2+ and 9.2 with Mg2+) is an enzymatic residue whose deprotonation disrupts the charge distribution in the active site and decreases activity.  相似文献   

11.
Karsten WE  Liu D  Rao GS  Harris BG  Cook PF 《Biochemistry》2005,44(9):3626-3635
The pH dependence of kinetic parameters of several active site mutants of the Ascaris suum NAD-malic enzyme was investigated to determine the role of amino acid residues likely involved in catalysis on the basis of three-dimensional structures of malic enzyme. Lysine 199 is positioned to act as the general base that accepts a proton from the 2-hydroxyl of malate during the hydride transfer step. The pH dependence of V/K(malate) for the K199R mutant enzyme reveals a pK of 5.3 for an enzymatic group required to be unprotonated for activity and a second pK of 6.3 that leads to a 10-fold loss in activity above the pK of 6.3 to a new constant value up to pH 10. The V profile for K199R is pH independent from pH 5.5 to pH 10 and decreases below a pK of 4.9. Tyrosine 126 is positioned to act as the general acid that donates a proton to the enolpyruvate intermediate to form pyruvate. The pH dependence of V/K(malate) for the Y126F mutant is qualitatively similar to K199R, with a requirement for a group to be unprotonated for activity with a pK of 5.6 and a partial activity loss of about 3-fold above a pK of 6.7 to a new constant value. The Y126F mutant enzyme is about 60000-fold less active than the wild-type enzyme. In contrast to K199R, the V rate profile for Y126F also shows a partial activity loss above pH 6.6. The wild-type pH profiles were reinvestigated in light of the discovery of the partial activity change for the mutant enzymes. The wild-type V/K(malate) pH-rate profile exhibits the requirement for a group to be unprotonated for catalysis with a pK of 5.6 and also shows the partial activity loss above a pK of 6.4. The wild-type V pH-rate profile decreases below a pK of 5.2 and is pH independent from pH 5.5 to pH 10. Aspartate 294 is within hydrogen-bonding distance to K199 in the open and closed forms of malic enzyme. D294A is about 13000-fold less active than the wild-type enzyme, and the pH-rate profile for V/K(malate) indicates the mutant is only active above pH 9. The data suggest that the pK present at about pH 5.6 in all of the pH profiles represents D294, and during catalysis D294 accepts a proton from K199 to allow K199 to act as a general base in the reaction. The pK for the general acid in the reaction is not observed, consistent with rapid tautomerization of enolpyruvate. No other ionizable group in the active site is likely responsible for the partial activity change observed in the pH profiles, and thus the group responsible is probably remote from the active site and the effect on activity is transmitted through the protein by a conformational change.  相似文献   

12.
Aktas DF  Cook PF 《Biochemistry》2008,47(8):2539-2546
The mitochondrial NAD-malic enzyme catalyzes the oxidative decarboxylation of malate to pyruvate and CO2. The role of the dinucleotide substrate in oxidative decarboxylation is probed in this study using site-directed mutagenesis to change key residues that line the dinucleotide binding site. Mutant enzymes were characterized using initial rate kinetics, and isotope effects were used to obtain information on the contribution of these residues to binding energy and catalysis. Results obtained for the N479 mutant enzymes indicate that the hydrogen bond donated by N479 to the carboxamide side chain of the nicotinamide ring is important for proper orientation in the hydride transfer step. The stepwise oxidative decarboxylation mechanism observed for the wt enzyme changed to a concerted one, which is totally rate limiting, for the N479Q mutant enzyme. In this case, it is likely that the longer glutamine side chain causes reorientation of malate such that it binds in a conformation that is optimal for concerted oxidative decarboxylation. Converting N479 to the shorter serine side chain gives very similar values of KNAD, Kmalate, and isotope effects relative to wt, but V/Et is decreased 2 000-fold. Data suggest an increased freedom of rotation, resulting in nonproductively bound cofactor. Changes were also made to two residues, S433 and N434, which interact with the nicotinamide ribose of NAD. In addition, N434 donates a hydrogen bond to the beta-carboxylate of malate. The KNAD for the S433A mutant enzyme increased by 80-fold, indicating that this residue provides significant binding affinity for the dinucleotide. With N434A, the interaction of the residue with malate is lost, causing the malate to reorient itself, leading to a slower decarboxylation step. The longer glutamine and methionine side chains stick into the active site and cause a change in the position of malate and/or NAD resulting in more than a 104-fold decrease in V/Et for these mutant enzymes. Overall, data indicate that subtle changes in the orientation of the cofactor and substrate dramatically influence the reaction rate.  相似文献   

13.
Mitochondrial malate dehydrogenase (mMDH) and malic enzyme (mME) of a filarial worm Setaria digitata were studied. mMDH exhibited the highest activities in the oxidation and reduction reactions at pH 9.5 and pH 6.2, respectively, while mME did so in the malate decarboxylation reaction at pH 6.8. mME showed no detectable activity on the pyruvate carboxylation direction. The Km values for malate (1.7 mM) and oxaloacetate (0.17 mM) and the ratio of Vmax oxidation: Vmax reduction (2.73) tend to favor the oxaloacetate reduction by mMDH. mME showed a relatively high Km value of 8.3 mM, for malate decarboxylation. A drug, diethylcarbamazine citrate (DEC-C), did not change appreciably the activity of either mMDH or mME, while filarin (a drug of herbal origin) effectively inhibited mMDH. The leaf extracts of Ocimum sanctum, Lawsonia inermis and Calotropis gigantea and leaf and flower extracts of Azadirachta indica were, however, found to inhibit both mMDH and mME.  相似文献   

14.
T M Dougherty  W W Cleland 《Biochemistry》1985,24(21):5870-5875
The decarboxylation of oxalacetate shows equilibrium-ordered kinetics, with Mg2+ adding before oxalacetate. The Ki for Mg2+ increases below a pK of 6.9, corresponding to a ligand of the metal that is probably glutamate, and decreases above a pK of 9.2, corresponding to water coordinated to enzyme-bound Mg2+. Both V and V/KOAA decrease above the pK of 9.2, suggesting that the carbonyl oxygen of oxalacetate must replace water in the inner coordination sphere of Mg2+ prior to decarboxylation. The enzyme-Mg2+-oxalacetate complex must be largely an outer sphere one, however, since the pK of 9.2 is seen in the V profile. The phosphorylation of glycolate or N-hydroxycarbamate (the actual substrate that results from reaction of hydroxylamine with bicarbonate) occurs only above the pK of 9.2, with V/K profiles decreasing below this pH. The alkoxides of these substrates appear to be the active species, replacing water in the coordination sphere of Mg2+ prior to phosphorylation by MgATP. Glycolate, but not N-hydroxycarbamate, can bind when not an alkoxide, since the V profile for the former decreases below a pK of 8.9, while V for the latter is pH independent. Initial velocity patterns for phosphorylation of fluoride in the presence of bicarbonate show saturation by MgATP but not by fluoride. The V/K profile for fluoride decreases above the pK of 9.0, showing that fluoride must replace water in the coordination sphere of Mg2+ prior to phosphorylation. None of the above reactions is sensitive to the protonation state of the acid-base catalyst that assists the enolization of pyruvate in the physiological reaction.  相似文献   

15.
T M Dougherty  W W Cleland 《Biochemistry》1985,24(21):5875-5880
pH profiles have been determined for the reactions catalyzed by pyruvate kinase between pyruvate and MgATP and between phosphoenolpyruvate and MgADP. V, V/KMgATP, and V/Kpyruvate all decrease below a pK of 8.3 and above one of 9.2. The group with pK = 8.3 is probably a lysine that removes the proton from pyruvate during enolization, while the pK of 9.2 is that of water coordinated to enzyme-bound Mg2+. The fact that this pK shows in all three pH profiles shows that pyruvate forms a predominantly second sphere complex and cannot replace hydroxide to form the inner sphere complex that results in enolization and subsequent phosphorylation. On the basis of the displacement of the pK of the acid-base catalytic group in its V/K profile, phosphoenolpyruvate is a sticky substrate, reacting to give pyruvate approximately 5 times faster than it dissociates. The V/K profile for the slow substrate phosphoenol-alpha-ketobutyrate shows the pK of 8.3 for the acid-base catalytic group in its correct position, but this group must be protonated so that it can donate a proton to the intermediate enolate following phosphoryl transfer. The secondary phosphate pK of the substrate is seen in this V/K profile as well as in the pKi profile for phosphoglycolate (but not in those for glycolate O-sulfate or oxalate), showing a preference for the trianion for binding. The chemical mechanism with the natural substrates thus appears to involve phosphoryl transfer between MgADP and a Mg2+-bound enolate with metal coordination of the enolate serving to make it a good leaving group.  相似文献   

16.
Isocitrate dehydrogenase was purified from Hydrogenobacter thermophilus, and the corresponding gene was cloned and sequenced. The enzyme had similar structural properties to the isocitrate dehydrogenase of Escherichia coli, but differed in its catalytic properties, such as coenzyme specificity, pH dependency and kinetic parameters. Notably, the enzyme catalysed the oxidative decarboxylation of isocitrate, but not the reductive carboxylation of 2-oxoglutarate. The carboxylation reaction required the addition of cell extract and ATP-Mg, suggesting the existence of additional carboxylation factor(s). Further analysis of the carboxylation factor(s) resulted in the purification of two polypeptides. N-terminal amino acid sequencing revealed that the two polypeptides are homologues of pyruvate carboxylase with a biotinylated subunit, but do not catalyse pyruvate carboxylation. Pyruvate carboxylase was also purified, but was not active in stimulating isocitrate dehydrogenase. Isocitrate dehydrogenase, the novel biotin protein, ATP-Mg and NADH were essential for the reductive carboxylation of 2-oxoglutarate. These observations indicate that the novel biotin protein is an ATP-dependent factor, which is involved in the reverse (carboxylating) reaction of isocitrate dehydrogenase.  相似文献   

17.
M Y Yoon  P F Cook 《Biochemistry》1987,26(13):4118-4125
The pH dependence of kinetic parameters and inhibitor dissociation constants for the adenosine cyclic 3',5'-monophosphate dependent protein kinase reaction has been determined. Data are consistent with a mechanism in which reactants selectively bind to enzyme with the catalytic base unprotonated and an enzyme group required protonated for peptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) binding. Binding of the peptide apparently locks both of the above enzyme residues in their correct protonation state. MgATP preferentially binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/KMgATP are pH independent. The V/K for Ser-peptide is bell-shaped with pK values of 6.2 and 8.5 estimated. The pH dependence of 1/Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/KSer-peptide, while the Ki for MgAMP-PCP increases from a constant value of 650 microM above pH 8 to a constant value of 4 mM below pH 5.5. The Ki for uncomplexed Mg2+ obtained from the Mg2+ dependence of V and V/KMgATP is apparently pH independent.  相似文献   

18.
When malic enzyme is added to a mixture of malate-2-d, TPN, CO2, pyruvate, and TPNH at concentrations calculated to be at equilibrium, the TPNH level first drops and then increases slowly to its original level. This equilibrium perturbation is caused by slower cleavage of C-D than C-H bonds during hydride transfer as malate-2-d and TPNH are partly converted into TPND and malate-2-h in the process of establishing isotopic equilibrium. With malate-2-d, isotope effects for malic enzyme at pH 7.1 and malate dehydrogenase at pH 9.3 of 1.45 and 1.70-2.16 (depending on oxaloacetate level) were determined with this method, while the corresponding isotope effects on V/Kmalate and V for the chemical reactions were 1.5-1.8 and 1.0, and 1.9 and 1.5 for the two enzymes. The advantage of this method is its extreme sensitivity, and the lack of interference from various artifacts. The sensitivity is sufficient to permit determination of 13C and 15N isotope effects in favorable cases, and values of 1.031 for malic enzyme with 13CO2, and 1.047 for glutamate dehydrogenase with 15NH4+ have been determined. In the course of this work it was discovered that the equilibrium constants for oxidation by DPN, and oxidative decarboxylation by TPN are lower for malate-2-d than for malate-2-h by a factor of 0.76-0.82. Changes in Keq upon deuterium substitution, which are predicted by the calculations of Hartshorn and Shiner (1972), should be observed for many other reactions as well.  相似文献   

19.
Karsten WE  Pais JE  Rao GS  Harris BG  Cook PF 《Biochemistry》2003,42(32):9712-9721
The kinetic mechanism of activation of the mitochondrial NAD-malic enzyme from the parasitic roundworm Ascaris suum has been studied using a steady-state kinetic approach. The following conclusions are suggested. First, malate and fumarate increase the activity of the enzyme in both reaction directions as a result of binding to separate allosteric sites, i.e., sites that exist in addition to the active site. The binding of malate and fumarate is synergistic with the K(act) decreasing by >or=10-fold at saturating concentrations of the other activator. Second, the presence of the activators decreases the K(m) for pyruvate 3-4-fold, and the K(i) (Mn) >or=20-fold in the direction of reductive carboxylation; similar effects are obtained with fumarate in the direction of oxidative decarboxylation. The greatest effect of the activators is thus expressed at low reactant concentrations, i.e., physiologic concentrations of reactant, where activation of >or=15-fold is observed. A recent crystallographic structure of the human mitochondrial NAD malic enzyme [13] shows fumarate bound to an allosteric site. Site-directed mutagenesis was used to change R105, homologous to R91 in the fumarate activator site of the human enzyme, to alanine. The R105A mutant enzyme exhibits the same maximum rate and V/K(NAD) as does the wild-type enzyme, but 7-8-fold decrease in both V/K(malate) and V/K(Mg), indicating the importance of this residue in the activator site. In addition, neither fumarate nor malate activates the enzyme in either reaction direction. Finally, a change in K143 (a residue in a positive pocket adjacent to that which contains R105), to alanine results in an increase in the K(act) for malate by about an order of magnitude such that it is now of the same magnitude as the K(m) for malate. The K143A mutant enzyme also exhibits an increase in the K(act) for fumarate (in the absence of malate) from 200 microM to about 25 mM.  相似文献   

20.
S K Ng  M Wong    I R Hamilton 《Journal of bacteriology》1982,150(3):1252-1258
Oxaloacetate decarboxylase was purified to 136-fold from the oral anaerobe Veillonella parvula. The purified enzyme was substantially free of contaminating enzymes or proteins. Maximum activity of the enzyme was exhibited at pH 7.0 for both carboxylation and decarboxylation. At this pH, the Km values for oxaloacetate and Mg2+ were at 0.06 and 0.17 mM, respectively, whereas the Km values for pyruvate, CO2, and Mg2+ were 3.3, 1.74, and 1.85 mM, respectively. Hyperbolic kinetics were observed with all of the aforementioned compounds. The Keq' was 2.13 X 10(-3) mM-1 favoring the decarboxylation of oxaloacetate. In the carboxylation step, avidin, acetyl coenzyme A, biotin, and coenzyme A were not required. ADP and NADH had no effect on either the carboxylation or decarboxylation step, but ATP inhibited the carboxylation step competitively and the decarboxylation step noncompetitively. These types of inhibition fitted well with the overall lactate metabolism of the non-carbohydrate-fermenting anaerobe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号