首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the regulation of collagen post-translational modification in transformed cells were studied in three established human sarcoma cell lines and in chick-embryo fibroblasts freshly transformed by Rous sarcoma virus. The collagens synthesized by all but one of these and by all the control human and chick-embryo cell lines were almost exclusively of types I and/or III. The relative rate of collagen synthesis and the amounts of prolyl hydroxylase activity and immunoreactive protein were markedly low in all the transformed human cell lines. The other enzymes studied, lysyl hydroxylase, hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase, never showed as large a decrease in activity as did prolyl hydroxylase, suggesting a more efficient regulation of the last enzyme than of the three others. The chick-embryo fibroblasts freshly transformed by Rous sarcoma virus differed from the human sarcoma cells in that prolyl hydroxylase activity was distinctly increased, whereas the decreases in immunoreactive prolyl hydroxylase protein and the three other enzyme activities were very similar to those in the simian-virus-40-transformed human fibroblasts. It seems possible that this increased prolyl hydroxylase activity is only a temporary phenomenon occurring shortly after the transformation, and may be followed by a decrease in activity later. The newly synthesized collagens of all the transformed cells that produced almost exclusively collagen types I and/or III had high extents of lysyl hydroxylation, and there was also an increase in the ratio of glycosylated to non-glycosylated hydroxylysine. The data suggest that one critical factor affecting modification is the rate of collagen synthesis, which affects the ratio of enzyme to substrate in the cell.  相似文献   

2.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

3.
4.
Interaction of intact type VI collagen with hyaluronan.   总被引:5,自引:0,他引:5  
The capacity of non-pepsinyzed type VI collagen to bind to hyaluronan was investigated. Type VI collagen was extracted from bovine meniscal cartilage with 6 M GuHCl and purified by extraction of PEG precipitates and dissociative Sephacryl S-500 HR chromatography. Type VI collagen, detected with a monoclonal antibody, bound in 0.5 M NaCl to hyaluronan-coated micro-wells, the degree of binding being higher at 37 degrees C than 23 degrees C and 4 degrees C. Incubation of type VI collagen in competitive inhibition assays with testicular hyaluronidase digests of hyaluronan in liquid phase, reduced binding of the protein to hyaluronan-coated microwells to background levels. Thus, non-pepsinyzed type VI collagen binds to hyaluronan in vitro.  相似文献   

5.
6.
We have investigated the regulation of fibronectin and procollagen synthesis in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. We thus examined whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells. It was found that while the synthesis of both pro alpha 1 and pro alpha 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules.  相似文献   

7.
We have examined the interactions between the small dermatan sulfate proteoglycan decorin and collagen types I-VI using solid phase binding assays. The results of these studies showed that 125I-decorin bound most efficiently to collagen type VI in a time- and concentration-dependent manner. Furthermore, this interaction was specific and of moderately high affinity (Kd approximately 3 x 10(-7) M). Binding of decorin to collagen type VI appears to involve the decorin core protein rather than the glycosaminoglycan side chains, since the isolated core protein as well as a recombinant fusion protein containing a major segment (65%) of the human decorin core protein inhibited binding of 125I-decorin to collagen type VI. Other related proteoglycans and their respective core proteins also inhibited the binding of 125I-decorin to collagen type VI, whereas unrelated proteins and isolated glycosaminoglycan chains were without effect. In addition to decorin, collagen type II was also shown to bind to immobilized collagen type VI. Both interactions were effectively inhibited by preincubation of the immobilized collagen VI with decorin or collagen type II. These results suggested that the collagen type VI molecule has binding sites for collagen type II and decorin which are located in close proximity on the collagen type VI molecule. Possible functional roles of these interactions are discussed.  相似文献   

8.
9.
A transient increase in collagen VI expression precedes the accumulation of collagen I associated with interleukin-4 (IL-4)-induced mineralization in human osteoblast-like cells. Transfection with an antisense oligonucleotide specific for alpha1(VI) collagen mRNA was shown to attenuate mRNA levels of collagens VI and I. Incubating IL-4 treated cells with anti-collagen VI antiserum decreased expression of alpha1(I) mRNA. The results suggest that collagen VI may regulate collagen I expression in the early phase of IL-4-induced mineralization.  相似文献   

10.
Studies are described employing two erythropoietic systems to elucidate regulatory mechanisms that control both normal erythropoiesis and erythroid differentiation of transformed hemopoietic precursors. Evidence is provided suggesting that normal erythroid cell precursors require erythropoietin as a growth factor that regulates the number of precursors capable of differentiating. Murine erythroleukemia cells proliferate without need of erythropoietin; they show a variable, generally low, rate of spontaneous differentiation and a brisk rate of erythropoiesis in response to a variety of chemical agents. Present studies suggest that these chemical inducers initiate a series of events including cell surface related changes, alterations in cell cycle kinetics, and modifications of chromatin and DNA structure which result in the irreversible commitment of these leukemia cells to erythroid differentiation and the synthesis of red-cell-specific products.  相似文献   

11.
描述了胶原蛋白的结构和Ⅵ型胶原蛋白的结构以及胶原蛋白的应用 ,并对人类胶原蛋白的生产进行了展望。  相似文献   

12.
The biosynthesis of type VI collagen was studied in "matrix-free" chick embryo smooth muscle cells and fibroblasts. Omission of ascorbate from the culture affected to a great extent the secretion in fibroblasts but had a very minor effect on smooth muscle cells. Quantitative analysis of the secretion process in continuous time course and in pulse-chase experiments confirmed that fibroblasts and smooth muscle cells secreted type VI collagen with the same chain composition but with different kinetics: after 4 h of chase more than 60% of the labeled type VI collagen was present in the culture medium of fibroblasts, whereas at the same time interval less than 25% was secreted by smooth muscle cells. The different kinetics depends on intrinsic properties of the cells, since it was detected also in adherent cells. However, even in fibroblasts, secretion of type VI collagen was much slower than secretion of fibronectin, of which more than 50% was already in the cell medium after 1 h of chase. Treatment of the cells with inhibitors of hydroxylation and glycosylation caused a shift in mobility that revealed a size heterogeneity in the Mr = 260,000 subunit. No evidence of processing was observed in chick cells for any of the subunits that were synthesized and secreted uncleaved. In addition, after several days of chase the Mr of the subunits of type VI collagen isolated from the matrix remained unchanged, thus excluding that in the chick even a partial or incomplete processing takes place.  相似文献   

13.
Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen   总被引:5,自引:0,他引:5  
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX regulates the expression of type VI collagen. In this study, we investigated the binding of TNX to type I collagen as well as to type VI collagen and the effects of these proteins on fibrillogenesis of type I collagen. Full-length recombinant TNX, which is expressed in and purified from mammalian cell cultures, and type VI collagen purified from bovine placenta were used. Solid-phase assays revealed that TNX or type VI collagen bound to type I collagen, although TNX did not bind to type VI collagen, fibronectin, or laminin. The rate of collagen fibril formation and its quantity, measured as increased turbidity, was markedly increased by the presence of TNX, whereas type VI collagen did not increase the quantity but accelerated the rate of collagen fibril formation. Combined treatment of both had an additive effect on the rate of collagen fibril formation. Furthermore, deletion of the epidermal growth factor-like (EGF) domain or fibrinogen-like domain of TNX attenuated the initial rate of collagen fibril formation. Finally, we observed abnormally large collagen fibrils by electron microscopy in the skin from TNX-deficient (TNX-/-) mice during development. These findings demonstrate a fundamental role for TNX and type VI collagen in regulation of collagen fibrillogenesis in vivo and in vitro.  相似文献   

14.
15.
Ascorbic acid specifically stimulates collagen production in cultured human skin fibroblasts, an effect that appears to be independent of its cofactor role in prolyl and lysyl hydroxylation. In order to investigate the level of regulation of ascorbic acid on collagen synthesis, we have translated mRNA in a cell-free system derived from rabbit reticulocytes. Total RNA was prepared from normal human skin fibroblasts and similar fibroblasts which had been exposed to 100 uM ascorbic acid for four days. Ascorbic acid treatment resulted in a twofold stimulation of procollagen mRNA whereas non-collagenous mRNA was unchanged. These results reveal that ascorbic acid has a preferential stimulating effect on type I procollagen mRNA.  相似文献   

16.
Cells were enucleated with cytochalasin B after infection with herpes simplex virus 1. When protein synthesis was blocked by cycloheximide from the time of infection, mRNA for viral alpha-infected cell polypeptides (ICP) 4, 0, and 27 accumulated in the cytoplasm and was expressed after the removal of both drug and nucleus. A host protein, ICP 22, whose synthesis is stimulated in intact cells, was not made, and viral protein ICP4, which is normally modified to a form that migrates more slowly in polyacrylamide gels, was not modified in the absence of the nucleus. After enucleation at 2 h postinfection, a number of viral beta and gamma proteins continued to be made, starting at 20 to 25% of the normal rates and declining with a half-time of about 2 h. The synthesis of ICP 4 declined more rapidly, suggesting that it is switched off in the cytoplasm.  相似文献   

17.
The extracellular matrix component collagen type VI demonstrates potent growth-stimulatory effects and has been associated with aggressive tumour growth. Although, juvenile angiofibromas (JAs) often exhibit an aggressive growth pattern, the collagen type VI expression of this fibrovascular tumour has not been addressed so far. RT-PCR, Western blot analysis and immunohistochemistry were used in this study to analyse collagen type VI, type VI collagen receptor subunits (integrin α1, α2, α10, α11 and β1) and the type VI collagen receptor NG2 in JAs (N = 15) and nasal mucosa (NM, N = 8) samples. The mRNA expression of all three collagen type VI chains was found to be up-regulated significantly (P < 10−3–10−5, adjusted) in JAs compared to NM tissues. The Western blot analysis proved highly prominent collagen-type VI expression in JAs. The ApoTome technique revealed strong collagen-type VI signals in tumour endothelium. NG2 (P < 10−3, adjusted) and α11-integrin (P = 0.04, adjusted) showed a significantly higher mRNA expression levels in JAs than in NM samples. NG2, α1-, α2- and β1-intergin were located to tumour vessels, and additional stromal signals were observed for NG2 and α1-integrin in JAs. This study demonstrates a prominent collagen-type VI expression in JAs. The collagen-type VI may exert an important growth stimulus in this tumour.  相似文献   

18.
Tissue transglutaminase (tTG) is a multifunctional enzyme with a plethora of potential applications in regenerative medicine and tissue bioengineering. In this study, we examined the role of tTG as a regulator of chondrogenesis in human mesenchymal stem cells (MSC) using nanofibrous scaffolds coated with collagen type XI. Transient treatment of collagen type XI films and 3D scaffolds with tTG results in enhanced attachment of MSC and supports rounded cell morphology compared to the untreated matrices or those incubated in the continuous presence of tTG. Accordingly, enhanced cell aggregation and augmented chondrogenic differentiation have been observed on the collagen type XI-coated poly-(L-lactide) nanofibrous scaffolds treated with tTG prior to cell seeding. These changes implicate that MSC chondrogenesis is enhanced by the tTG-mediated modifications of the collagen matrix. For example, exogenous tTG increases resistance to collagenolysis in collagen type XI matrices by catalyzing intermolecular cross-linking, detected by a shift in the denaturation temperature. In addition, tTG auto-crosslinks to collagen type XI as detected by western blot and immunofluorescent analysis. This study identifies tTG as a novel regulator of MSC chondrogenesis further contributing to the expanding use of these cells in cartilage bioengineering.  相似文献   

19.
Treatment of cultured human skin fibroblasts with increasing doses of gamma-interferon produces a distinct reduction of steady-state levels of the alpha 3 chain of collagen VI mRNA by about 60% but not of the alpha 1 and alpha 2 chain mRNAs. A similar decrease was also observed for collagen I and III mRNA while fibronectin mRNA remained at the same level. The decrease in alpha 3(VI) mRNA is accompanied by a reduced synthesis of collagen VI and by a reduced deposition of both collagen VI and fibronectin in urea-insoluble form in the cell matrix. No other gamma-interferon effects were observed for fibronectin biosynthesis. Immunoprecipitation of metabolically labeled collagen VI demonstrated a strongly reduced synthesis (by 65-80%) of intracellular alpha 3(VI) chains with no decrease found for alpha 1(VI) and alpha 2(VI) chains. All three chains were, however, found to be reduced in the culture medium. Pepsin treatment of immunoprecipitated collagen VI showed similar chain ratios for material in the culture medium obtained in the absence or presence of gamma-interferon. It indicates that correctly assembled heterotrimers of the composition [alpha 1(VI) alpha 2(VI) alpha 3(VI)] are formed and secreted also in the absence of an equivalent alpha 3(VI) chain synthesis but at a reduced rate. The data support previous predictions from sequence analyses [Chu et al. (1988) J. Biol. Chem. 263, 18,601-18,606] that collagen VI molecules composed of all three constituent chains are more stable than other assembly alternatives.  相似文献   

20.
Orientation of type VI collagen monomers in molecular aggregates   总被引:3,自引:0,他引:3  
Type VI collagen, prepared from guanidine extracts of human amnion, contains very little monomeric material, the major forms being dimers and tetramers. In order to study the orientation of the molecules in these aggregates, they were digested with pepsin followed by bacterial collagenase. Two fragments were isolated, one containing part of the inner globular domain still attached to part of the triple helix and the other containing large fragments of the outer globular domain. Each fraction was further analyzed; peptides were isolated and their amino-terminal amino acid sequences determined. By comparing the determined sequences with published data, it was found that the outer globular domain contained sequences derived from the amino-terminal domain of all three chains of type VI collagen whereas the inner globular domain contained sequences from the carboxy-terminal domain. This provided direct chemical evidence that dimers and tetramers of type VI collagen are formed by overlapping carboxy-terminal regions of the monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号