首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Antigenic specificities of complement factor H from mice were studied serologically. In addition to previously reported allotypes, referred to as H.1 and H.2, a new allotype of complement factor H, H.3, was identified in the BFM/2Ms strain derived from European wild mice. Using three different alloantisera raised against the various mouse factor H allotype, a serological survey of the common laboratory strains and wild-derived strains of Mus musculus and its relatives, Mus spretus, Mus spretoides, and Mus spicilegus was carried out. All of the common laboratory strains examined in this survey had the H.1 allotype except for STR/N which had H.2. The geographical distributions of factor H allotypes in M. musculus were specific to the subspecies. Mice derived from Mus musculus domesticus and Mus musculus castaneus had the H.1 allotype. Mice derived from M. m. musculus, Mus musculus bactrianus, and Mus musculus molossinus had the H.2 allotype. Only BFM/2Ms and BFM/1Mpl strains derived from M. m. domesticus had the novel H.3 allotype. Sera of mice from strains derived from M. spretoides and M. spicilegus cross-reacted with H.2-specific antiserum, and those from M. spretus cross-reacted with H.3-specific antiserum.  相似文献   

2.
Mouse chromosomes, with the exception of the Y chromosome, are telocentric. The telomere at the p-arm is separated from the centromere by the tL1 sequence and TLC tandem repeats. A previous report showed that the TLC array was also conserved in other strains of the subgenus Mus. These results suggest that the TLC arrays promote the stable evolutionary maintenance of a telocentric karyotype in the subgenus Mus. In this study, we investigated the degree of conservation of TLC arrays among a variety of wild-derived inbred strains, all of which are descendants of wild mice captured in several areas of the world. Genomic PCR analysis indicates that the sequential order of telomere-tL1 is highly conserved in all strains, whereas tL1-TLC is not. Next, Southern blot analysis of DNAs isolated from a panel of mouse subspecies showed both Mus musculus domesticus and Mus musculus castaneus subspecies possess TLC arrays. Unexpectedly, this repeat appears to be lost in almost all Mus musculus musculus and Mus musculus molossinus subspecies, which show a clear geographic divide. These results indicate that either other unknown sequences were replaced by the TLC repeat or almost all M. m. musculus and M. m. molossinus subspecies do not have any sequence between the telomere and minor satellites. Our observation suggests that the TLC array might be evolutionarily unstable and not essential for murine chromosomal conformation. This is the first example of the subspecies-specific large genome alterations in mice.  相似文献   

3.
Japanese house mice (Mus musculus molossinus) are thought to be a hybrid lineage derived from two prehistoric immigrants, the subspecies M. m. musculus of northern Eurasia and M. m. castaneus of South Asia. Mice of the western European subspecies M. m. domesticus have been detected in Japanese ports and airports only. We examined haplotype structuring of a 200 kb stretch on chromosome 8 for 59 mice from throughout Eurasia, determining short segments (≈ 370–600 bp) of eight nuclear genes (Fanca, Spire2, Tcf25, Mc1r, Tubb3, Def8, Afg3l1 and Dbndd1) which are intermittently arranged in this order. Where possible we identified the subspecies origin for individual gene alleles and then designated haplotypes for concatenated alleles. We recovered 11 haplotypes among 19 Japanese mice examined, identified either as ‘intact’ haplotypes derived from the subspecies musculus (57.9%), domesticus (7.9%), and castaneus (2.6%), or as ‘recombinant’ haplotypes (31.6%). We also detected recombinant haplotypes unique to Sakhalin. The complex nature of the recombinant haplotypes suggests ancient introduction of all three subspecies components into the peripheral part of Eurasia or complicated genomic admixture before the movement from source areas. ‘Intact’domesticus and castaneus haplotypes in other Japanese wild mice imply ongoing stowaway introductions. The method has general utility for assessing the history of genetic admixture and for disclosing ongoing genetic contamination.  相似文献   

4.
Mus musculus domesticus, M.m. bactrianus, M. m. musculus, M.m. castaneus, and M.m. molossinus wild mice were investigated for polymorphisms of the Y Chromosome (Chr) genes Zinc finger-Y (Zfy) and Sex-determining region-Y (Sry). Zfy divided the Y Chrs of these mice into domesticus- (domesticus) and musculus-types (musculus, castaneus, molossinus). M.m. bactrianus specimens had both Y Chrs, possibly owing to the introgression of a musculus-type Y into this population. Sry identified a subpopulation of musculus-type Y chromosomes. This subpopulation, designated the molossinus-type, was found in M.m. molossinus, a M. musculus subspecies specimen from northern China (Changchun), and laboratory mice. The cumulative data suggest that M.m. musculus of northern China and Korea are subpopulation distinct from M.m. musculus of Europe and central China and that this subpopulation invaded Japan, giving rise to M.m. molossinus. Furthermore, the data suggest that the musculus-type Y of the laboratory mouse originated from this subpopulation, corroborating early historical record reporting that Chinese and Japanese mice that were imported into Europe for the pet trade contributed to the genome of the laboratory mouse.  相似文献   

5.
An electrophoretic polymorphism of an erythrocyte esterase, esterase-8, specific for the substrates α- and β-naphthyl acetate has been observed in the Asian house mouse, Mus musculus castaneus. M. m. castaneus is interfertile with inbred strains of mice, and F1 hybrids (C57BL/6J × castaneus)F1 and (SWR/J × castaneus)F1 show a double-banded phenotype similar to a mixture of parental forms. This pattern suggests codominant expression of a structural gene difference. In backcrosses, ES-8 segregated as a single autosomal gene, designated Es-8, linked to Gpi-1 on chromosome 7. A gene order of Es-8, Gpi-1, c, Mod-2, and Hbb was determined from a series of crosses.  相似文献   

6.
We mapped the distribution and diversity of mitochondrial D-loop haplotypes among 502 New Zealand house mice (Mus musculus). By widespread sampling from 74 sites, we identified 14 new haplotypes. We used Bayesian phylogenetic reconstructions to estimate the genetic relationships between the New Zealand representatives of Mus musculus domesticus (all six known clades) and M. m. castaneus (clade HG2), and mice from other locales. We defined four distinct geographic regions of New Zealand with differing haplotype diversity indices. Our Results suggest (a) two independent pre-1840 invasions by mice of different origin (domesticus clade E and castaneus clade HG2) at opposite ends of the country; (b) multiple later invasions by domesticus clades E and F accompanying the post-1840 development of New Zealand port facilities in the central regions, plus limited local incursions by domesticus clades A, B, C and D1; (c) a separate invasion of Chatham I. by castaneus clade HG2; (d) previously undescribed New Zealand haplotypes, potentially the products of localised indigenous mutation, and (e) hybridisation between different lineages.  相似文献   

7.
The intra- and intersubspecific genetic distances between five subspecies of Mus musculus were estimated from restriction enzyme cleavage patterns or maps of mitochondrial DNA (mtDNA). The European subspecies, M. m. domesticus and Asian subspecies, M. m. bactrianus, M. m. castaneus, M. m. molossinus and M. m. urbanus were examined. For each subspecies, except M. m. urbanus, at least two local races from widely separated localities were examined. Intrasubspecific heterogeneity was found in the mtDNA cleavage patterns of M. m. bactrianus and M. m. castaneus. M. m. molossinus and M. m. domesticus, however, revealed no intrasubspecific heterogeneity. Four of the subspecies had distinct cleavage patterns. The fifth, M. m. urbanus, had cleavage patterns identical to those of M. m. castaneus with several enzymes. Estimates of genetic distances between the various races and subspecies were obtained by comparing cleavage maps of the mtDNAs with various restriction enzymes. Nucleotide sequence divergences of mtDNA between local races were estimated to be less than 0.4% in M. m. bactrianus and less than 0.3% in M. m. castaneus. The times of divergence of both subspecies were calculated to be 0.1–0.2 x 106 years. These values suggest that the intrasubspecific divergence began some 0.1–0.2 x 106 years ago. On the other hand, nucleotide sequence divergences between European subspecies M. m. domesticus and Asian subspecies M. m. bactrianus and M. m. castaneus were 7.1% and 5.8%, respectively. The times of divergence were calculated to be 2.1–2.6 x 106 years. Further, the nucleotide sequence divergence and time of divergence between M. m. molossinus and the other two Asian subspecies were comparable to those between M. m. molossinus and M. m. domesticus (about 3% and 1 x 106 years, respectively). These results suggest that M. m. molossinus is situated in a unique evolutionary position among Asian subspecies.  相似文献   

8.
A thermolabile variant of α-galactosidase has been found in a stock of Mus musculus molossinus. Analysis of the F1 generation shows that this variant is inherited as an X-linked gene.  相似文献   

9.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

10.
We have investigated the variation of proteins from crude homogenates of mouse kidneys in several strains of Mus musculus by means of two-dimensional electrophoresis. In this study, we have used the strains C57BL/6J, DBA/2J, CD-1, M. m. castaneus, and M. m. molossinus, as well as offspring from crosses among these strains. Out of the 100 loci screened, we have found nine loci showing interstrain differences. We have been able to identify three proteins as Id-1, Car-2, and Sep-1. The remaining variants are probably new loci in the mouse. Most of the variants (seven) can be mapped to a chromosome. We have found also that differences in the protein pattern as seen on two-dimensional gels are small among subspecies of Mus musculus.  相似文献   

11.
The distribution of distinct genetic lineages of mice in New Zealand, combined with historical records of shipping routes, political decisions, market prices, trading patterns and immigration policy, suggest that two distinct lineages of Mus musculus travelled separate routes to reach opposite ends of New Zealand in early pre-colonial times (1792–1830). (1) Mus musculus castaneus could have colonised the southern South Island between 1792 and 1810, with sealers returning from the Canton fur market, but these voyages were illegal (=undocumented) because direct trading with China was prohibited until after 1813. Signs that the potential links between the South Island and Canton were seldom used after 1810 include: (a) the Canton sealskin market was already rapidly declining in profitability by the time sealers switched to New Zealand from Bass Strait in 1804; (b) the Otago colonies of fur seals (Arctocephalus forsteri) were exhausted after 1810; (c) M. m. castaneus is absent from the southern offshore islands repeatedly visited by Sydney-based sealers after 1810. (2) M. m. domesticus had multiple well-documented opportunities to colonise the Bay of Islands with traders from Australia after 1821, and both the Cook Strait area and the southern South Island with whalers after 1829. After 1840, multiple haplotypes of M. m. domesticus from different European sources accompanied the organised settlement of New Zealand by European colonists.  相似文献   

12.
The rate of meiotic recombination varies markedly between species and among individuals. Classical genetic experiments demonstrated a heritable component to population variation in recombination rate, and specific sequence variants that contribute to recombination rate differences between individuals have recently been identified. Despite these advances, the genetic basis of species divergence in recombination rate remains unexplored. Using a cytological assay that allows direct in situ imaging of recombination events in spermatocytes, we report a large (∼30%) difference in global recombination rate between males of two closely related house mouse subspecies (Mus musculus musculus and M. m. castaneus). To characterize the genetic basis of this recombination rate divergence, we generated an F2 panel of inter-subspecific hybrid males (n = 276) from an intercross between wild-derived inbred strains CAST/EiJ (M. m. castaneus) and PWD/PhJ (M. m. musculus). We uncover considerable heritable variation for recombination rate among males from this mapping population. Much of the F2 variance for recombination rate and a substantial portion of the difference in recombination rate between the parental strains is explained by eight moderate- to large-effect quantitative trait loci, including two transgressive loci on the X chromosome. In contrast to the rapid evolution observed in males, female CAST/EiJ and PWD/PhJ animals show minimal divergence in recombination rate (∼5%). The existence of loci on the X chromosome suggests a genetic mechanism to explain this male-biased evolution. Our results provide an initial map of the genetic changes underlying subspecies differences in genome-scale recombination rate and underscore the power of the house mouse system for understanding the evolution of this trait.  相似文献   

13.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

14.
Allelic distributions of Thy-1, Ly-l, and Ly-2 antigens in wild mice are characteristic of each Mus musculus subspecies. Eastern mice (M.m.molossinus, M.mmusculus, M.m.castaneus, M.m.bactrianus) express the Thy-1.1 antigen, whereas Western mice (M.m. domesticus, M.m.brevirostris) express the Thy-1.2. All mice from wild populations examined in this survey express the Ly-1.2. The Ly-2.1 is distributed in Eastern mice and some Western mice, and the Ly-2.2 is found in the remaining Western mice. Allelic distributions of these antigens were also examined in two other species, Mus spretus and Mus spicilegus. Allelic constitutions of Thy-1 and Ly-1 in these species are similar to those of Eastern mice. Some M.spicilegus, however, express the Ly-1.1 antigen. This antigenic type is not found in M.musculus. Some Eastern mice related to M.m.castaneus react weakly to Ly-1.2-specific and Ly-2.1-specific monoclonal antibodies in both the complement-mediated cytotoxicity test and the absorption test. These results suggest that M.m.castaneus has unique alleles in the Ly-1 and Ly-2 loci.  相似文献   

15.
The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (α) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of α for hominids have been at most 13%. Here, we estimate α for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans.  相似文献   

16.
Restriction endonuclease fragment length polymorphisms (RFLPs) were found using the cDNA probe Hox-2.1 for the homeo box-2.1 gene in the mouse. Polymorphism was detected in restriction patterns generated by fragments fromHindIII digestion. The great majority of laboratory strains of mice carries theHox-2.1 a allele. Only two laboratory strains carry theHox-2.1 b allele. Among strains of wild origin, the European subspecies (Mus m. domesticus, M. m. brevirostris, andM. m. musculus) and some Asian subspecies (M. m. castaneus) carry theHox-2.1 a allele. The subspecies from Far Eastern countries (M. m. molossinus, Chinese mice of wild origin, andM. m. yamashinai) carry theHox-2.1 ballele. Using the RFLP, theHox-2.1 gene was mapped on chromosome 11. Three-point cross test data showed that the recombination frequency is 29.6% between theHba and theHox-2.1 genes and 23.5% between theHox-2.1 and theEs-3 genes. The gene order ofHba-Hox-2.1-Es-3 has been confirmed.  相似文献   

17.
A 7-bp deletion in the Cd4 gene, present in the strain MOLF/Ei of Mus musculus molossinus and absent in laboratory mouse strains (Mus musculus musculus), provided the means to distinguish the parental origin of the Cd4 alleles expressed in single cells of F1 (AKR × MOLF/Ei) and F1 (Balb/C × MOLF/Ei) hybrids. Single-cell RT-PCR showed that the individual CD4+ lymphocyte expresses either the maternal or the paternal Cd4 allele, never both. In situ hybridization proved that Cd4 alleles replicate asynchronously, as expected in the case of genes expressed monoallelically.  相似文献   

18.
19.
Silver staining has been used to detect active nucleolus organizer regions (NOR's). By this criterion six mouse chromosomes, numbers 12, 15, 16, 17, 18 and 19, can have an NOR. The number and distribution of chromosomes with NOR's vary among inbred strains of Mus musculus musculus (C57BL/6J, BALB/cJ, C3H/HeJ and C3H/StCr1BR) and in M. musculus molossinus. In a musculus x molossinus F1 hybrid, nucleolus organizers from each parent are silver stained.—Chromosomes which have NOR's in diploid cells also show them in tetraploid cells and in established cell lines. The BALB/cJ strain shows Ag-staining of NOR's on chromosomes 12, 15, 18 and occasionally 16. In the RAG cell line, which was derived from BALB/c, active NOR's are seen on 12, 15 and 18, even after these chromosomes have undergone structural rearrangements in the cell line. Some correlation exists between the amount of Ag-stain and the size of a secondary construction region, with a large amount of Ag-stain present on a chromosome which has a prominent secondary constriction. There is no correlation between the amount of Ag-stain and the presence or absence of C-band material.  相似文献   

20.
Genome sequences are essential tools for comparative and mutational analyses. Here we present the short read sequence of mouse chromosome 17 from the Mus musculus domesticus derived strain A/J, and the Mus musculus castaneus derived strain CAST/Ei. We describe approaches for the accurate identification of nucleotide and structural variation in the genomes of vertebrate experimental organisms, and show how these techniques can be applied to help prioritize candidate genes within quantitative trait loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号