首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
The nutrition hypothesis for the adaptive significance of insect gall formation postulates that galls accumulate higher concentrations of nutritive compounds than uninfested plant tissue, resulting in a high performance of the gall former. This hypothesis has been supported by some taxa of gall insects, but not by taxa such as cynipid wasps. Aphid galls are expected to require higher levels of nitrogen than other insects’ galls with a single inhabitant, because aphid galls are required to sustain a number of aphids reproducing parthenogenetically over two generations. The present study tested this hypothesis by evaluating aphid performance and amino acid concentration in phloem sap, using the aphid Rhopalosiphum insertum (Walker) (Homoptera: Aphididae), which establishes colonies on leaves of Sorbus commixta Hedlund or in galls of the aphid Sorbaphis chaetosiphon Shaposhnikov (Homoptera: Aphididae). We prepared the gall and non‐gall treatments on trees of S. commixta, in which R. insertum fundatrices were reared and allowed to reproduce. In S. chaetosiphon galls, R. insertum colonies propagated more rapidly, and the second generation grew larger and more fecund than on ungalled leaves. The amount of amino acids exuding from cut galled leaves was fivefold that in ungalled leaves; however, there was no significant difference in the amino acid composition between galled and ungalled leaves. In the intact leaves, total amino acid concentration in the phloem sap declined rapidly from late April to late May; however, the galls retained this high amino acid concentration in developing leaves for 1 month. These results indicate that the improved performance in R. insertum is ascribed to the increased concentration of amino acids in galled leaves. We suggest that S. chaetosiphon galls function to promote the breakdown of leaf protein, leading to an increased performance of gall‐inhabiting aphids.  相似文献   

3.
角倍蚜虫瘿对盐肤木光合特性和总氮含量的影响   总被引:2,自引:0,他引:2  
李杨  杨子祥  陈晓鸣  刘平  唐翊峰 《生态学报》2013,33(21):6876-6884
通过温室栽培和接种实验,以接种角倍蚜形成虫瘿的盐肤木和未接种角倍蚜的盐肤木为实验材料,测定和分析虫瘿对盐肤木光合特性和不同组织氮含量的影响。结果表明虫瘿对盐肤木的光合作用形成扰动,与对照植株相比较:(1)有虫瘿复叶的最大净光合速率升高,其中虫瘿初期、中期和后期分别升高14.49%、32.17%和42.01%;虫瘿还引起无虫瘿复叶最大净光合速率升高,但中期以后下降到正常水平;(2)虫瘿中期有虫瘿复叶的光饱和点升高、无虫瘿复叶光饱合点下降;虫瘿初期和中期有虫瘿复叶的光补偿点升高、无虫瘿复叶光补偿点下降;(3)虫瘿初期引起有虫瘿复叶及邻近无虫瘿复叶暗呼吸速率升高,但中期和后期影响不显著。虫瘿对盐肤木光合作用的扰动程度与小叶的位置和虫瘿生长时期密切相关。同时,虫瘿改变了盐肤木叶片氮含量分布,其中虫瘿外壁、有虫瘿复叶和无虫瘿复叶的氮含量分别为1.13%、1.98%和2.14%,这可能是营养物质从无虫瘿复叶流向有虫瘿复叶,并最终流向虫瘿,满足虫瘿和瘿内蚜虫生长需求的原因。  相似文献   

4.
Summary Samples of shoots ofPistacia lentiscus carrying galls of the aphid,Aploneura lentisci, were collected at three localities in Israel. Shoots growing near pruning scars carried more galls than elsewhere on the plant, but these galls weighed less and contained fewer aphids (smaller clones). The proportion of empty galls increased with gall density. Crowding of galls at such sites may be due to the early burst of buds at the time of aphid emergence from the overwintering eggs, and not to active search for preferred sites. Shoots bearing larger numbers of leaves carried heavier galls, which contained larger aphid clones. The position of the galled leaf on the shoot had no effect on gall weight nor on clone size. The physiological condition of the plant may be an important environmental (ecological) factor affecting the variation in clone-size and in aphid morphology among galls.  相似文献   

5.
Summary We examined the capacity of the galling aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). A series of 14C-labeling experiments and a biomass allocation experiment showed that P. betae galls functioned as physiologic sinks, drawing in resources from surrounding plant sources. Early gall development was dependent on aphid sinks increasing allocation from storage reserves of the stem, and later development of the progeny within the gall was dependent on resources from the galled leaf blade and from neighboring leaves. Regardless of gall position within a leaf, aphids intercepted 14C exported from the galled leaf (a non-mobilized source). However, only aphid galls at the most basal site of the leaf were strong sinks for 14C fixed in neighboring leaves (a mobilized source). Drawing resources from neighboring leaves represents active herbivore manipulation of normal host transport patterns. Neighboring leaves supplied 29% of the 14C accumulating in aphids in basal galls, while only supplying 7% to aphids in distal galls. This additional resource available to aphids in basal galls can account for the 65% increase in progeny produced in basal galls compared to galls located more distally on the leaf and limited to the galled leaf as a food resource. Developing furits also act as skins and compete with aphid-induced sinks for food supply. Aphid success in producing galls was increased 31% when surrounding female catkins were removed.  相似文献   

6.
The fluid-feeding aphid Schlechtendalia chinensis (Bell) induces horned galls on its primary host, the Chinese Sumac (Rhus chinensis Mill). Horned galls are harvested for their high content of tannins, and used in a range of medical and chemical applications. Gall development is a complex and highly controlled physiological process, where the growing insect population manipulates the plant developmental programs that allow the transformation of plant tissue into a gall. In this study, we examine whether Schlechtendalia alters the balance of plant hormones in the host tree as a means to achieve gall formation. For this, we measured concentrations for a series of endogenous hormones, including indole-3-acetic acid (IAA), cytokinin (CTK), gibberellic acid (GA), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH). Specifically, we conducted a time course (namely, 30, 85, 100, 115, 125, 140, 155, and 170 days from gall initiation) analysis, where we measured both gall and leaf samples representing different developmental stages that spanned an entire growing season. To correlate these hormone data with developmental parameters during gall growth, we determined gall volume, tannin content, and aphid population size for the same time points. Interestingly, tannin production rose steeply in the early stages of gall development, while the aphid population size grew little. After this single peak (day 100), tannin concentrations declined moderately and aphid population size increased from then on. This switch in population growth was accompanied by notable changes in plant hormone titers. In general, all hormones but GA were elevated in all sample types isolated from the host tree (gall, leaves near and distant from gall) when compared with samples from an uninfected tree. Most of the elevated hormones showed similar changes over time; however, GA appeared to display the opposite behavior in all samples, suggesting that GA is a key target for controlling gall growth. When tannin concentrations spiked, GA levels peaked as well, while the remaining plant hormones exhibited a decline at that time. Principle component analysis revealed distinct functional groups in our hormone cohort. This yielded three groups comprising (1) CTK, ABA, ETH, and JA, (2) IAA and SA, (3) GA. The fact that GA comprised its own group and exhibited a unique profile during gall development prompted us to examine whether exogenous GA would alter the rate of gall growth. Indeed, we found that ectopic GA significantly accelerated gall growth, and more strongly than all other hormones, consistent with the notion that controlling GA levels within the gall is crucial for stimulating gall development. We propose a model, whereby the host plant downregulates GA concentrations in an attempt to throttle gall growth, while the gall-inducing aphid population counters these attempts.  相似文献   

7.
We tested the Plant Vigor Hypothesis by determining the distribution of galls formed on leaves of witch hazel, Hamamelis virginiana , by the aphid Hormaphis hamamelidis , and by determining various factors that affect the fecundity of the gall-forming fundatrices. We also studied the role of the fundatrix in host plant manipulation. While the mean number of galls per leaf was low, galls had an aggregated distribution among leaves. Among trees, the average number of galls per leaf was not related to the mean leaf size, contrary to the preference prediction of the Plant Vigor Hypothesis. While fundatrices preferred the distal leaves of buds, which grew more than the proximal leaves, being on distal leaves conferred no increase in fecundity for fundatrices, contrary to predictions of the Plant Vigor Hypothesis. Gall size was the factor that explained the largest proportion of variation in fundatrix fecundity; fundatrix size explained somewhat less of the variation. Also, gall position on the leaf, number of aphid galls on the leaf, and on which leaf of the bud the gall was located all played small, statistically significant roles in explaining fundatrix fecundity, but their effects were variable between experiments. Removal of fundatrices shortly after galls had enclosed them limited the growth of galls, indicating the role of the fundatrices in gall growth. We compare and contrast this system versus other gall-forming insects, as well as discuss the adaptive significance of the aphid manipulation of the host plant. Much of the data contradict predictions of the Plant Vigor Hypothesis, and we discuss how gall size, as a measure of plant growth caused by insect manipulation, explains the observed patterns.  相似文献   

8.
Some aphid species induce leaf galls, in which the fundatrix parthenogenetically produces many nymphs. In order to ensure high performance, galls have to provide the aphids with sufficient nutrients, in particular, amino acids as a nitrogen source. We tested this hypothesis using six Tetraneura aphid species that induce closed galls. We extracted free amino acids from the whole gall tissues of unit weight and quantified the concentration of each amino acid. There were large differences in the total amino acid concentrations among galls of the Tetraneura species. Tetraneura species in which higher concentrations of total amino acids were found in the gall tended to produce larger numbers of offspring. Of the amino acids found, asparagine was predominant in the gall. The asparagine concentration in T. yezoensis galls was several hundred times as high as in control leaves. We discussed why such a high level of asparagine accumulates in aphid galls.  相似文献   

9.
We examined how the galling aphid Pemphigus batae manipulates resource translocation patterns of resistant and susceptible narrowleaf cottonwood Populus angustifolia. Using carbon-14 (14C)-labeling experiments in common garden trials, five patterns emerged. First, although aphid galls on resistant and susceptible genotypes did not differ in their capacity to intercept assimilates exported from the leaf they occupied, aphids sequestered 5.8-fold more assimilates from surrounding leaves on susceptible tree genotypes compared to resistant genotypes. Second, gall sinks on the same side of a shoot as a labeled leaf were 3.4-fold stronger than gall sinks on the opposite side of a shoot, which agrees with patterns of vascular connections among leaves of the same shoot (orthostichy). Third, plant genetic-based traits accounted for 26% of the variation in sink strength of gall sinks and 41% of the variation in sink strength of a plant’s own bud sinks. Fourth, tree susceptibility to aphid gall formation accounted for 63% of the variation in 14C import, suggesting strong genetic control of sink–source relationships. Fifth, competition between two galls was observed on a susceptible but not a resistant tree. On the susceptible tree distal aphids intercepted 1.5-fold more 14C from the occupied leaf than did basal aphids, but basal aphids compensated for the presence of a distal competitor by almost doubling import to the gall from surrounding leaves. These findings and others, aimed at identifying candidate genes for resistance, argue the importance of including plant genetics in future studies of the manipulation of translocation patterns by phytophageous insects.  相似文献   

10.
Many researchers have studied the potential medicinal properties of galls from Rhus chinensis because of the importance of these galls in East Asian traditional medicine. Gall formation induced by a parasitic aphid species (Schlechtendalia chinensis) occurs via a well-documented developmental progression, and traditional medicinal efficacy is thought to be maximal during a specific portion of this cycle. To investigate seasonal changes of metabolites in the galls of R. chinensis, we collected samples from the galls and leaves of R. chinensis at sites in Mt. Jiri and Mt. Cheonma in Korea between May and December, 2011. Samples were extracted and analyzed gas chromatography mass spectrometry (GC-MS) and liquid chromatography quadrupole time-offlight mass spectrometry (LC-QTOF-MS) to monitor metabolic changes. Multivariate analyses such as principle components analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) were used to find patterns in metabolite profile changes and the responsible substances for seasonal fluctuations. LC-QTOF-MS analyses showed differences of metabolites in same organisms depending on seasons, locations, and biological interactions. Additional GC-MS analyses identified approximately 28 metabolites including sugars, amino acids, and organic acids. Shikimic acid and gallic acid appear to be the major compounds contributing to the seasonal variability in metabolic profiles of R. chinensis leaves and galls. In addition, we found that shikimic acid and gallic acid content in R. chinensis galls were the highest during wintertime.  相似文献   

11.
Abstract 1. Field studies were conducted to evaluate the preference and performance of a gall‐inducing midge (Harmandia tremulae) within the crown of trembling aspen (Populus tremuloides). Females did not select oviposition sites preferentially within leaves, but did lay preferentially on young leaves. 2. Larvae were the only life stage involved in gall site selection within leaves and in gall initiation and development. Gall size, which was positively related to survival, was highest for galls on mid veins that were located close to the petiole. However, one‐third of galls were located on lateral veins and most galls were not adjacent to the petiole, indicating that many larvae choose sub‐optimal gall initiation sites. 3. Gall density was positively associated with leaf length, and leaf length, was positively associated with gall size. However, gall density per leaf was not related to larval survival in galls. This latter result may be a result of an observed inverse relationship between gall size and gall density for similar‐sized leaves. 4. The results partially support the plant vigour and optimal plant module size hypotheses, which predict that galler fitness in successfully induced galls should be highest on large, fast‐growing plant modules. The lack of a strong preference‐performance link supports the confusion hypothesis, which predicts that oviposition and gall site selection may often be suboptimal in systems where galler lifespan is short. This study suggests that small‐scale variations in plant quality within leaves, can render gall site selection by juveniles as important as that previously reported for adult females.  相似文献   

12.
Gall-site selection by the aphid Kaltenbachiella japonica was evaluated in relation to leaf position in a shoot, and gall positions within a leaf. First-instar fundatrices induce closed galls on the midribs of host leaves, and several galls were often induced on one leaf. Leaves with many galls were often withered before emergence of sexuparae from the galls. Within a leaf, gall volume was positively correlated with the sum of lateral-vein length in the leaf segment at which the gall was induced. The observed pattern in gall volume among the leaf segments corresponded with that in the lateral-vein length. These results show that a foundatrix selects the most vigorous position within a leaf to produce more offspring. Although distal leaves grew faster than did basal leaves, gall density was highest on leaves at the middle order when a shoot has more than seven leaves. Optimal gall-site selection seems to be constrained by the asynchrony in timing between the hatching of fundatrices and leaf growth within a shoot. These results suggest that the observed gall distribution is affected by both the distribution of suitable galling sites within a leaf and the synchrony with leaf phenology of the host plant.  相似文献   

13.
Aphids harbor primary endosymbionts, Buchnera aphidicola, in specialized cells within their body cavities. Aphids and Buchnera have strict mutualistic relationships in nutrition exchange. This ancient association has received much attention from researchers who are interested in endosymbiotic evolution. Previous studies have found parallel phylogenetic relationships between non‐galling aphids and Buchnera at lower taxonomic levels (genus, species). To understand whether relatively isolated habitats such as galls have effect on the parallel relationships between aphids and Buchnera, the present paper investigated the phylogenetic relationships of gall aphids from Pemphigus and allied genera, which induce pseudo‐galls or galls on Populus spp. (poplar) and Buchnera. The molecular phylogenies inferred from three aphid genes (COI, COII and EF‐1α) and two Buchnera genes (gnd, 16S rRNA gene) indicated significant congruence between aphids and Buchnera at generic as well as interspecific levels. Interestingly, both aphid and Buchnera phylogenies supported three main clades corresponding to the galling locations of aphids, namely leaf, the joint of leaf blade and petiole, and branch of the host plant. The results suggest phylogenetic conservatism of gall characters, which indicates gall characters are more strongly affected by aphid phylogeny, rather than host plants.  相似文献   

14.
The sexual generation of a cynipid wasp, Andricus symbioticus Kovalev, forms its leaf galls most frequently near and on the leaf petiole of Quercus trees. I examined the effect of gall formation by A. symbioticus on the leaf development of a host plant, Quercus dentata Thunberg, by comparing the size and shape of galled and ungalled leaves. I also examined the effect of gall formation on shoot development by comparing the length of shoots with and without galled leaves. Three of seven Q. dentata trees surveyed were heavily infested with A. symbioticus. Leaf size did not differ between galled and ungalled leaves. However, the ratio of leaf width to length was greater in galled leaves, which is regarded to be a result of gall formation by A. symbioticus inhibiting the growth in length of Q. dentata leaves. Shoot length did not differ significantly between shoots with and without galled leaves. These results suggest that galls of A. symbioticus act as a sink that competes with leaves for reserved photoassimilates.  相似文献   

15.
Aphid saliva plays an essential role in the interaction between aphids and their host plants. Several aphid salivary proteins have been identified but none from galling aphids. Here the salivary proteins from the Chinese gall aphid are analyzed, Schlechtendalia chinensis, via an LC‐MS/MS analysis. A total of 31 proteins are identified directly from saliva collected via an artificial diet, and 141 proteins are identified from extracts derived from dissected salivary glands. Among these identified proteins, 17 are found in both collected saliva and dissected salivary glands. In comparison with salivary proteins from ten other free‐living Hemipterans, the most striking feature of the salivary protein from S. chinensis is the existence of high proportion of proteins with binding activity, including DNA‐, protein‐, ATP‐, and iron‐binding proteins. These proteins maybe involved in gall formation. These results provide a framework for future research to elucidate the molecular basis for gall induction by galling aphids.  相似文献   

16.
We examined how leaf galls, induced by the cynipid wasp Phanacis taraxaci, influence the partitioning of photoassimilates within the host, the common dandelion, Taraxacum officinale. Galled and ungalled plants were exposed to 14CO2 and the labelled photoassimilates accumulating within galls and other parts of the host were measured. During the growth phase of the gall they were physiological sinks for photoassimilates, accumulating 9% to 70% of total carbon produced by the host, depending upon the number of galls per plant. High levels of 14C assimilation in the leaves of galled plants compared to controls, suggest that galls actively redirect carbon resources from unattacked leaves of their host plant. This represents a significant drain on the carbon resources of the host, which increases with the number and size of galls per plant. Active assimilation of 14C by the gall is greatest in the growth phase and is several orders of magnitude lower in the maturation phase. This finding is consistent with physiological and anatomical changes that occur during the two phases of gall development and represents a key developmental strategy by cynipids to ensure adequate food resources before larval growth begins.  相似文献   

17.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

18.
S. E. Hartley 《Oecologia》1998,113(4):492-501
The chemical composition of galled and ungalled plant tissue was compared in a series of experiments. Gall and adjacent plant tissue was analysed for 20 species of gall-former on 11 different plant species. There were clear differences between galled and ungalled tissue in levels of nutrients and secondary compounds. Gall tissue generally contained lower levels of nitrogen and higher levels of phenolic compounds than ungalled plant tissue. The gall tissue produced by the same plant in response to different species of gall-former differed in chemical composition, as did the gall-tissue from young and mature galls of the same species. The chemical differences between gall and plant tissues were studied in more detail in two field manipulations. Firstly, the seasonal changes in phenolic biosynthesis in Pontania proxima and P. pedunculi (Hymenoptera: Tenthredinidae) gall tissue were compared to those of their host plants, Salix alba and S. caprea. In both types of gall tissue, phenolic levels declined as the season progressed, but levels in the surrounding plant tissue increased. When the gall insects were killed with insecticide, phenolic levels in the galled tissue dropped to the same level as those in adjacent plant tissue. Secondly, the density of Cynips divisa (Hymenoptera: Cynipidae) galls on Quercus robur leaves was reduced by removing half the galls present, either those from the central region of the leaf or those from the edge. Decreasing gall density increased the size of the remaining galls and the weight of the insects, but these effects were most marked when the galls remaining were growing centrally on the leaf, i.e. when the galls from the edge had been removed. Decreasing gall density increased the nitrogen content of the remaining galls, again to a greater extent in galls growing centrally on the leaf. The results of these studies suggest that the levels of nutrients and secondary compounds in gall tissue are usually markedly different to those of surrounding plant tissue, and that gall-formers may produce species-specific and temporally variable changes in the chemical composition of gall tissue. Received: 7 July 1997 / Accepted: 29 September 1997  相似文献   

19.
Plants exhibit a wide array of inert and induced responses in defense against herbivore attack. Among these the abscission of organs has been argued to be a highly effective mechanism, depending, however, on the herbivore’s feeding mode. While consisting of plant tissues, insect induced galls are seen as the extended phenotype of the gall inducer which might circumvent many or most of the plant defenses. There is very little information whether and how far beyond the gall tissue gall inducers might affect plant tissues. A localized impact is likely to leave the abscission of galled organs as a viable defense although at a cost. Here, we report on an instance where the host plant, Neea madeirana (Nyctaginaceae) abscises leaves galled by two species of Bruggmannia (Diptera: Cecidomyiidae), more frequently than ungalled leaves in a rain forest in Amazonia, Brazil. Once on the forest floor the leaves decay quickly, while both gall types show signs of localized maintenance of healthy tissues for a while (the green island effect). However, on the forest floor galls are exposed to a new set of potential natural enemies. Both gall types show a minimum of a five-fold increase in mortality due to pathogens (fungi and bacteria) compared to galls that were retained on the host tree. We discuss the adaptive nature of plant organ abscission as a plant defense against gallers and as a gall inducer adaptive trait. Handling editor: Graham Stone.  相似文献   

20.
焦懿 《昆虫知识》1998,35(2):87-89
角倍由角倍蚜Schlechtendaliachinensis(Bell)寄生在盐肤木RhuschinensisMill和滨盐肤木R.chinensisvar.raxburghii(DC)Rehd.叶上致瘿而形成,约占五倍子总产量的80%。藓圃上越冬若蚜和盐肤木林中角倍的分布均属聚集分布。影响越冬若蚜和角倍聚集度的主要生态因子分别为藓长势、湿度、光照和树与藓的距离、风向、风速。于母和雏倍分布在盐肤木和滨肤木的第5~11片叶上,其中7~9片叶上干母数和雏倍数超过50%。干母数与雏倍数存在着显著的线性关系。盐肤木上:y1=3.3394+0.7662x1,r1=0.9994**滨盐肤木上:y2=3.6707+0.7431x2,r2=0.9894**  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号