首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms are important for phytoremediation of soil contaminated with heavy metals. In the present study, bacteria Bacillus sp., Pseudomonas sp., Alcaligenes sp., and Flavobacterium sp. isolated from the Zhangshi Irrigation Area were applied to bioadsorbed Cd and Pb in liquid cultures with root exudates of sunflower as a sole carbon source. The experimental data demonstrated that these bacteria had a high potential of enrichment of Cd and Pb, and Bacillus sp. and Alcaligenes sp. had better ability to accumulate Cd or Pb than the others; the distinct bioadsorption of Cd and Pb by bacteria might depend on the physiology of bacteria, categories of heavy metals, and environmental factors (such as pH). In addition, root exudates of sunflower could not only support the growth of these bacteria, but also influence the toxicity and bioavailability of Cd and Pb. Our results indicated that amendment with bacteria isolated from heavy-metal-polluted soil and root exudates could be considered as a potential approach to enhance the phytoremediation of Cd- or Pb-contaminated soil.  相似文献   

2.
Abstract

Uptake and in-plant transport of formaldehyde by six plants with or without soil microorganisms were investigated. The capabilities of fresh and boiled leaf extracts to dissipate added formaldehyde were also measured to evaluate formaldehyde metabolism in plant tissues. Results show that when the initial formaldehyde level in air was 0.56?±?0.04?mg·m?3, the removal rate in the plant-only systems varied from 1.91 to 31.8?μg·h?1·g?1 FW (fresh weight). The removal rate of plants in the plant-only systems were ordered as Helianthus annuus Linn > Lycopersicon esculentum Miller > Oryza sativa > Sansevieria trifasciata Prain > Bryophyllum pinnatum > Mesembryanthemum cordifolium L. f. Most reduction of formaldehyde in the air was due to degradation by active components in the plant tissues, of which 4–64% of these were through to be enzymatic reactions. In the microbe-plant systems, formaldehyde removal rates increased by 0.24–9.53 fold compared to the plant-only systems, with approximately 19.6–90.5% of the formaldehyde reduction resulting from microbial degradation. Microorganisms added to the rhizosphere solution enhanced phytoremediation by increasing the downward transport of formaldehyde and its release by roots. Results suggest a new means to screen for efficient plant species that can be used for phytoremediation of indoor air.  相似文献   

3.
A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by co-planting a cadmium/zinc (Cd/Zn) hyperaccumulator and lead (Pb) accumulator Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Co-planting with castor decreased the shoot biomass of S. alfredii as compared to that in monoculture. Cadmium concentration in S. alfredii shoot significantly decreased when grown with ryegrass or castor as compared to that in monoculture. However, no reduction of Zn or Pb concentration in S. alfredii shoot was detected in co-planting treatments. Total removal of either Cd, Zn, or Pb by plants was similar across S. alfredii monoculture or co-planting with ryegrass or castor, except enhanced Pb removal in S. alfredii and ryegrass co-planting treatment. Co-planting of S. alfredii with ryegrass or castor significantly enhanced the pyrene and anthracene dissipation as compared to that in the bare soil or S. alfredii monoculture. This appears to be due to the increased soil microbial population and activities in both co-planting treatments. Co-planting of S. alfredii with ryegrass or castor provides a promising strategy to mitigate both metal and PAH contaminants from co-contaminated soils.  相似文献   

4.

Aims

This study examined the effect of elevated CO2 on plant growth, root morphology and Cd accumulation in S. alfredii, and assessed the possibility of using elevated CO2 as fertilizer to enhance phytoremediation efficiency of Cd-contaminated soil by S. alfredii.

Methods

Both soil pot culture and hydroponic experiments were carried out to characterize plant biomass, root morphological parameters, and cadmium uptake in S. alfredii grown under ambient (350 μL L?1) or elevated (800 μL L?1) CO2.

Results

Elevated CO2 prompted the growth of S. alfredii, shoot and root biomass were increased by 24.6–36.7% and 35.0–52.1%, respectively, as compared with plants grown in ambient CO2. After 10 days growth in medium containing 50 μM Cd under elevated CO2, the development of lateral roots and root hairs were stimulated, additionally, root length, surface area, root volume and tip number were increased significantly, especially for the finest diameter roots. The total Cd uptake per pot was significantly greater under elevated CO2 than under ambient CO2. After 60 d growth, Cd phytoextraction efficiency was increased significantly in the elevated CO2 treatment.

Conclusions

Results suggested that the use of elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd-contaminated soil by S. alfredii.  相似文献   

5.
Abstract

Phytoremediation of heavy metal contaminated soils represents a promising technique and salt-tolerant hyperaccumulators for multiple metals are the need of time. Therefore, phytoremediation potential of four salt-tolerant grass species [Dhab (Desmostachya bipinnata), Kallar (Leptochloa fusca), Para (Brachiaria mutica) and Sporobolus (Sporobolus arabicus Boiss)] was evaluated for cadmium (Cd) and lead (Pb) in a hydroponic study. The plants were harvested after a growth period of 3 months in a nutrient solution containing different levels of Cd (0, 5, and 25?mg?L?1) and Pb (0, 25, and 125?mg L?1). Results indicated that Dhab grass showed the highest root and shoot dry matter yield followed by Para, Kallar and Sporobolus grass irrespective of metal or its level under which they were grown. All the grass species showed considerable Cd-accumulating potential with an accumulation of >150?mg kg?1of shoot dry matter at a higher level of Cd-contamination (25?mg?L?1). While in case of shoot Pb-accumulation only Para grass performed well and accumulated Pb >1000?mg kg?1 of shoot dry matter at the higher level of Pb-contamination (125?mg?L?1). Moreover, Para and Dhab grasses performed better for shoot Cd-uptake, while only Para grass showed promising shoot Pb uptake potential. In conclusion, these grass species could be penitentially used for phytoremediation of salt-affected Cd and Pb contaminated soils.  相似文献   

6.
Batch experiments were designed to characterize a multiple metal resistant bacterium Burkholderia sp. D54 isolated from metal contaminated soils in the Dabaoshan Mine in South China, and a follow-up experiment was conducted to investigate the effects of inoculating the isolate on plant growth and metal uptake by Sedum alfredii Hance grown on soils collected from a heavily contaminated paddy field in Daxing County, Guangxi Zhuang Automounous Region, Southwest China. Our experiments showed that strain D54 produced indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and solubilizing inorganic phosphate and solubilized insoluble metal bearing minerals. Bacterial inoculation significantly enhanced S. alfredii biomass production, and increased both shoot and root Cd concentration, but induced little variation in root/shoot Pb concentration and shoot Zn concentration. Despite this, the total shoot and root uptake of Cd, Pb and Zn in S. alfredii inoculated with D54 increased greatly compared to the non-inoculated controls. It was concluded that inoculation with strain D54 could help S. alfredii grow better on metal contaminated soils, produce more biomass, and remove more metals from soil, which implies improved efficiency of phytoextraction from metal contaminated soil. The knowledge gained from the present experiments constitutes an important advancement in understanding of the interaction between plant growth-promoting bacteria and hyperaccumulators with regard to plant ability to grow and remove the multiple heavy metals from soils.  相似文献   

7.
Weedy broomrape species, such as sunflower broomrape (Orobanche cumana Wallr.) and Egyptian broomrape [Phelipanche aegyptiaca Pers. (syn. O. aegyptiaca)], require a period of pre-conditioning before they can respond to germination stimulants. Thus, the sensitivity of weedy broomrape seeds to germination stimulants could be an important factor for broomrape control. In this study, the influence of conditioning agents, conditioning period (0–21 days) and germination stimulants on the germination of sunflower broomrape and Egyptian broomrape seeds was analyzed. Without conditioning, the sunflower and Egyptian broomrape seeds exhibited negligible germination responses to the stimulants. The germination rate of the broomrape seeds increased rapidly with conditioning period and reached a maximum under a conditioning period of 4–10 days; further prolonged conditioning resulted in a decrease in the germination rate. Gibberellic acid (GA3) could not only break the dormancy of the sunflower and Egyptian broomrape seeds but also maintained the high sensitivity of these seeds even after 21 days of conditioning. Furthermore, 100 µM of GA3 induced the germination of the Egyptian broomrape seeds. The stimulants that induced Egyptian broomrape germination were ranked in decreasing order as GR24 (76.8?%), strigol (76.1?%), tobacco root exudates (49.5?%), dehydrocostus lactones (DCL, 39.2?%), and maize root exudates (18?%). In contrast, GA3 did not directly induce sunflower broomrape seed germination, which responded to strigol (62.8?%)?>?maize root exudates (58.2?%)?>?GR24 (57.9?%)?>?tobacco root exudates (41.6?%)?>?DCL (41.3?%). These results indicate specialized recognition of germination stimulants by sunflower and Egyptian broomrape. This study may contribute to a better understanding of parasitic weed germination and may lead to improved control strategies.  相似文献   

8.
The present investigation deals with the advantages and potential of the Acacia nilotica bark as an adsorbent of toxic metals. Bark (1 g) when added to 100 ml of aqueous solution containing 10 μg ml-1 metal solution exhibited different metal adsorption values for different metals. The order of metal adsorption being Cr ≥ Ni > Cu > Cd > As > Pb. A similar trend of metal adsorption was observed when the bark is reused (1st recycle) Cr> Ni > Cu > Cd > Pb and also in the column sorption. In order to verify the metal removal property of A. nilotica bark, toxicity bioassay with Salix viminalis stem cuttings in hydroponic system augmented with Cd, Cr, and Pb together with A. nilotica bark powder was carried out. The results of toxicity bioassay confirmed the metal adsorption property of the bark powder. The functions of toxicity studies include leaf area, root length and number of new root primordia produced per stump. The leaf area, root length, and the number of new root primordia increased considerably in the presence of A. nilotica bark. The order of metal toxicity for leaf area and new root primordial is Cd > Cr > Pb. However, for root length the order of metal toxicity is Cr > Cd > Pb. The metal budgets of the leaf and root confirmed that the bark powder had adsorbed substantial amount of toxic metals and thus alleviates the toxicity imposed by the various tested elements. Hence, the utility of A. nilotica bark in developing and designing innovative technology for the clean up of toxic elements in aqueous solutions and possible scope for its use in phytoremediation are discussed.  相似文献   

9.
Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA) showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress.  相似文献   

10.
Vegetation and its associated microorganisms play an important role in the behaviour of soil contaminants. One of the most important elements is root exudation, since it can affect the mobility, and therefore, the bioavailability of soil contaminants. In this study, we evaluated the influence of root exudates on the mobility of fuel derived compounds in contaminated soils. Samples of humic acid, montmorillonite, and an A horizon from an alumi-umbric Cambisol were contaminated with volatile contaminants present in fuel: oxygenates (MTBE and ETBE) and monoaromatic compounds (benzene, toluene, ethylbenzene and xylene). Natural root exudates obtained from Holcus lanatus and Cytisus striatus and ten artificial exudates (components frequently found in natural exudates) were added to the samples, individually and as a mixture, to evaluate their effects on contaminant mobility. Fuel compounds were analyzed by headspace-gas chromatography-mass spectrometry. In general, the addition of natural and artificial exudates increased the mobility of all contaminants in humic acid. In A horizon and montmorillonite, natural or artificial exudates (as a mixture) decreased the contaminant mobility. However, artificial exudates individually had different effects: carboxylic components increased and phenolic components decreased the contaminant mobility. These results established a base for developing and improving phytoremediation processes of fuel-contaminated soils.  相似文献   

11.
The distribution of Cd (II) and Pb (II) among amino acids in parenteral nutrition formulations was investigated by coupling ion-chromatography (HPLC/IC) and electrothermal atomic absorption spectrometry. The methodology was based on ion-exchange separation and fluorimetric amino acid detection after post-column derivatization. Cd (II) and Pb (II) were assayed in 500-µL fractions of the column effluent. The distribution of Cd (II) and Pb (II) in alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), glycine (Gly), histidine (His), methionine (Met), phenylalanine (Phe), serine (Ser), and threonine (Thr) were analyzed by monitoring changes in the concentration of free amino acids by HPLC/IC. The results indicated that Cd (II) and Pb (II) were distributed according to the following trend: Gly–Cd?>?Gly–Pb?>?Ala–Cd?>?Ala–Pb?>?His–Cd?~?His–Pb?>?Thr–Cd?>?Thr–Pb?>?Phe–Cd?~?Phe–Pb?~?Asp–Cd?~?Asp–Pb?~?Met–Cd?~?Met–Pb?~?Glu–Cd?~?Glu–Pb?>?Ser–Cd?~?Ser–Pb. The effects of amino acid concentration and stability constants of amino acid–metal complexes are discussed.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) contamination has been considered as one of the major environmental concerns for farmland soil all over the world including China. Due to small per capita land area, to find crops or vegetable, which could not only degrade the PAHs contaminants but also would not concentrate PAHs, was particularly important. Celery was selected as the phytoremediator in this experiment, and the soil enzyme activity, PAHs-degrading microorganisms, and the speciation of PAHs in soil were studied. The results showed that celery could significantly enhance the remediation of PAHs compared with the controlled experiment after 90 days (p< 0.01), and the removal efficiency were 31.29%, 30.79%, and 50.21% in the soil, non-rhizosphere soil, and rhizosphere soil, respectively. The soil enzyme activity and PAHs-degrading microorganisms significantly increased in rhizosphere soil compared with non-rhizosphere soil (p< 0.05), and the bioaccessibility of PAHs in soil could have been enhanced in the presence of celery root exudates. Those would help the bioremediation of PAHs by soil microorganisms. Meanwhile, the concentration of PAHs in the edible portion of celery was only 17.13 ± 1.24 μg/kg, and the bioconcentration factors in the aboveground part of celery were only 0.025. This study provides a potential in-site farmland soil phytoremediation technology that could have practical utility.  相似文献   

13.
Lead (Pb) contamination of soils is a widespread problem. Mycorrhizal inoculation and synthetic chelators such as ethylenediaminetetraacetic acid (EDTA) may be useful for improving phytoremediation efficiency in Pb-contaminated soils. A greenhouse experiment was performed to study the influence of inoculation with arbuscular mycorrhizal fungus (AMF), Glomus mosseae, and addition of EDTA on phytoremediation of Pb by sunflowers (Helianthus annuus) in a calcareous soil. The experiment was a completely randomized design in a factorial arrangement with five levels of Pb, two levels of mycorrhizal treatments, and two levels of EDTA. Inoculation increased root colonization as Pb levels increased, but the addition of EDTA decreased it. Shoot and root dry matter yields increased by inoculation; however, they decreased with EDTA and Pb levels in co-application treatments. Pb concentration in shoots was significantly higher than that in roots, indicating a translocation factor greater than 1. Inoculation or addition of EDTA significantly increased Pb in roots and its translocation to shoots. The uptake index (UI) value increased in co-application of EDTA and AMF and the individual application of them; it is, therefore, concluded that both AMF and EDTA are effective in phytoremediation of Pb by sunflowers in the studied soil.  相似文献   

14.
Ricinus communis L. is a bioenergetic crop with high-biomass production and tolerance to cadmium (Cd) and lead (Pb), thus, the plant is a candidate crop for phytoremediation. Pot experiments were performed to study the effects of citric acid in enhancing phytoextraction of Cd/Pb by Ricinus communis L. Citric acid increased Cd and Pb contents in plant shoots in all treatments by about 78% and 18–45%, respectively, at the dosage of 10 mM kg?1 soil without affecting aboveground biomass production. Addition of citric acid reduced CEC, weakened soil adsorption of heavy metals and activated Cd and Pb in soil solutions. The acid-exchangeable fraction (BCR-1) of Pb remained lower than 7% and significantly increased with citric acid amendment. Respective increases in soil evaluation index induces by 14% and 19% under the Cd1Pb50 and Cd1Pb250 treatments upon addition of citric acid resulted in soil quality improvement. Ricinus communis L. has great potential in citric acid-assisted phytoextraction for Cd and Pb remediation.  相似文献   

15.
Polychlorinated biphenyls (PCBs) are toxic and persistent compounds that are difficult to break down and biodegrade. Plant secondary metabolites (PSMs) on root exudates can act as inducers of the biphenyl catabolic pathway, enhancing PCB biodegradation. In this study, the authors evaluated the effect of root exudates and PSMs obtained from Avena sativa, Brachiaria decumbens, Medicago sativa, and Brassica juncea on the biodegradation of PCB 44, PCB 66, PCB 118, PCB 138, PCB 153, PCB 170, and PCB 180 by a microbial consortium isolated from the rhizosphere of plants grown on soil contaminated with Aroclor 1260. Microorganisms were identified as Pseudomonas sp. and Stenotrophomonas sp. based on their 16S rRNA sequence. The plant root exudates increased the degradation percentage of PCB 44, PCB 66, and PCB 118, which were used as carbon source by the microorganisms. Flavanone, flavone, isoflavone, 7-hydroxyflavanone, 7-hydroxyflavone, and 6-hydroxyflavone were the PSMs identified in the root exudates, which increased the degradation percentage of all seven PCB congeners; they were also used as growth substrates by microbial consortium. These results showed the importance of the interaction between plants and microorganisms for achieving the removal of persistent pollutants such as PCBs from soil.  相似文献   

16.
Sedum alfredii Hance is a Zn and Cd co-hyperaccumulating plant species found in an old mining area in China. Four bacterial strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12 and Variovorax sp. SaNR1, isolated from surface-sterilized S. alfredii plants were used to investigate their endophytic nature and root colonization patterns and effects on phytoextraction of Zn and Cd. Laser scanning confocal microscopy revealed that gfp-tagged SaZR4, SaMR12, and SaNR1 cells formed biofilms on roots and that SaZR4 and SaMR12 cells could invade root tissues. SaMR10 showed the lowest total population associated with S. alfredii and little effect on plant growth and phytoextraction. SaZR4 significantly promoted Zn-extraction but not Cd-extraction. SaMR12 and SaNR1 significantly promoted plant growth in substrates supplemented with Zn or Cd and phytoextraction of Zn and Cd. Together, this study have shown that the four native endophytic bacteria differently colonize the host plants and modulate metal uptake and growth of host plant, and that SaMR12 and SaNR1 strains are promising assistants of S. alfredii plants for phytoremediation of Zn/Cd-contaminated soil.  相似文献   

17.
Positive root response to metals may enhance metal accumulation for greater requirement in hyperaccumulators. The effects of spatially heterogeneous Zn/Cd addition on root allocation, metal accumulation, and growth of the Zn/Cd hyperaccumulator Sedum alfredii were assessed in a pot experiment. Young shoots of S. alfredii were grown with or without supplied Zn/Cd. Two concentrations were used of each metal, and each metal concentration had one homogeneous and two heterogeneous treatments. Growth increased by 1.6–3.2 times with the increasing overall dose of Zn/Cd addition, and shoot biomass was positively correlated with shoot Zn/Cd concentration (P?<?0.001). In all heterogeneous treatments, the plants consistently allocated approximately 90% of root biomass to the metal-enriched patches, and shoot Zn/Cd contents were greater than or similar to those in the homogeneous treatment at each metal concentration. Plants in the control treatment showed symptoms of Zn deficiency, although their shoots had Zn concentrations 100-fold higher than the critical deficiency value for most plants. We conclude that S. alfredii has evolved root foraging mechanisms associated with its greater requirements for Zn/Cd. These results could have important implications both for phytoremediation and for investigation of positive role of Cd in higher plants.  相似文献   

18.
A bamboo species (Phyllostachys praecox) and a Cd/Zn hyperaccumulator (Sedum plumbizincicola) were tested under different planting systems to compare their heavy metal phytoremediation ability. P. praecox (MP), S. plumbizincicola (MS) and P. praecox × S. plumbizincicola (IPS) plantations were established in Cu, Zn, and Cd-contaminated soil. Soil properties and heavy metal contents in plants were determined and compared after four years of plantation establishment. The rankings of available and total metal contents in soil layers were MP > MS > IPS (0–20 cm) and MP > IPS > MS (20–40 cm, except for Cu), respectively. The Cu and Zn contents in mature bamboo tissues were significantly lower, but the Cd contents in bamboo tissues (except for leaves) higher, in the IPS than in the MP. The bioconcentration and the translocation factors in most of bamboo tissues showed an increasing trend from the MP to the IPS. Heavy metal distribution in plants is greatly affected by the planting patterns. The tested intercropping system of two plant species showed higher biomass productivity, implying more heavy metals can be removed from the soil through the harvesting of plants. Therefore, the IPS leads to significant improvement of soil phytoremediation.  相似文献   

19.
Soil potentially hazardous metal (PHM) is continually attracting public attention worldwide, due to its highly toxic properties and potentially huge damage to human being through food chain. Phytoremediation is an effective and eco-friendly way in remediation technology. A pot experiment was carried out to investigate the effect of different organic materials (biogas residue (BR), mushroom residue (MR), and bamboo-shoot shell (BS)) application on phytoremediation of two PHM-contaminated soils (Fuyang soil as ‘heavily-polluted soil’ and Wenzhou soil as ‘moderately-polluted soil’, respectively) by Sedum alfrecdii Hance. The results indicated: 1) for moderately-polluted soil, the 5% BR treatment had the strongest activation to Cu and Zn, for heavily-polluted soil, 1% BS treatment had the highest activation effect for Cu, Zn, Pb and Cd. 2) the above-ground biomass of Sedum alfredii Hance increased with the addition rate of organic materials. 3) for Cd uptake of Sedum alfredii Hance in moderately-polluted soil, only 1% BS treatment had a better accumulation effect, compared to the control, for Zn element, MR treatments were weaker than the control, while other treatments were better than the control, of which 5% BR, 1% BS and 5% BS accumulated more Zn element by 39.6%, 32.6% and 23.8%, respectively; in heavily-polluted soil, the treatments of 5% BS, 1% BR and 5% BR accumulated more Cd than the control by 12.9%, 12.8% and 6.2%, respectively, the treatments with organic materials addition promoted Zn accumulation in shoots of Sedum alfredii Hance, and the best treatment was 5% BS. Therefore, an appropriate application rate of BS and BR could improve the remediation efficiency for Zn/Cd contaminated soils by Sedum alfredii Hance.  相似文献   

20.
A field investigation was conducted to understand the root distributions and elemental accumulations of Chinese brake (Pteris vittata L.), an As-hyperaccumulator, grown in soils with a gradient of As concentration near an arsenic sulphide mine. The root distribution was affected not only by the levels of soil As, but also by soil texture. Plants grew better in sandy loam soils than in clay soils. Increases in the ratio of frond biomass to underground biomass were correlated with decreasing soil As concentration. Root densities of the plant decreased from 0–10 cm, 10–20 cm to 20–30 cm in the soil profiles. Most of the roots were concentrated in the upper 0–10 cm layer. Under high As conditions, As concentrations in different tissues followed the trends: pinnae > rhizomes ≈ roots of 0–10 cm > roots of 10–20 cm > roots of 20–30 cm > petioles, however, As concentrations in pinnae were higher than those in rhizomes under low As conditions. The rhizomes and pinnae were the main As pools, storing 75–86% of the total As uptaken by the plants. The rhizome, a `buffer-storage' for plant As, maintained high concentrations of As under high soil As while the pinnae became the most important organ of storing the As under low soil As. Chinese brake might possess the ability of adjusting its As-storage under different soil As levels. The plant can not only hyperaccumulate As from the soils, but also enriched P and Ni from the soils and translocated them to the fronds. It is important to improve the root distribution for phytoremediation of As-contaminated soils using Chinese brake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号