首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study antioxidant status and physiological responses of wheat to cycocel (CCC) and bio fertilizers application under water limitation condition, a factorial experiment was conducted based on randomized complete block design with three replications in 2015. Treatments included water limitation in three levels [normal irrigation (I1) as control; moderate water limitation (I2) or irrigation withholding at 50% of heading stage; severe water limitation (I3) or irrigation withholding at 50% of booting stage]; four bio fertilizer levels [(no bio fertilizer (F0), seed inoculation by Azotobacter chrocoocum strain 5 (F1), Pseudomonas putida strain 186 (F2), Azotobacter?+?Pseudomonas (F3))] and four CCC levels [(without CCC as control (C0), application of 400 (C1), 800 (C2) and 1200 (C3) mg/l)]. The results showed that water limitation decreased the chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, stomata conductance, leaf area index (LAI) and relative water content of wheat, but activity of catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) enzymes and proline content were increased. Similar results were observed in CAT, POD and PPO activities due to bio fertilizers and CCC application. Besides the water limitation effects, CCC-treated plants displayed a significant decrease in stomata conductance and LAI. Generally, it was concluded that the application of bio fertilizers and CCC can be a proper tool for increasing wheat yield under water limitation.  相似文献   

2.
In order to study bio fertilizers and zinc effects on some physiological parameters of triticale under a water-limitation condition, a factorial experiment was conducted based on randomized complete block design with three replications in 2014 and 2015. Experimental factors consisted of three irrigation treatments [normal irrigation (W0); moderate water limitation (W1) and severe water limitation (W2)]; four bio fertilizers’ levels [(no bio fertilizer (F0), application of mycorrhiza (F1), plant-growth-promoting rhizobacteria (PGPR) (F2) and both application PGPR and mycorrhiza (F3)] and four nano zinc oxide levels [(without nano zinc oxide (Zn0) as control, application of 0.3 (Zn1), 0.6 (Zn2) and 0.9 (Zn3) g?L?1)]. Results showed that water limitation decreased chlorophyll content, relative water content, stomatal conductance, quantum yield and grain yield of triticale, whereas electrical conductivity and the activity of catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and polyphenol oxidase (PPO, EC 1.14.18.1) enzymes were increased. Inoculation of plants with bio fertilizers and zinc application improved these traits (except electrical conductivity) under water-limitation condition as well as normal irrigation. Based on the results, it was concluded that bio fertilizers and nano zinc oxide application can be recommended for profitable triticale production under water-limitation condition.  相似文献   

3.
Two separate field experiments were conducted in 2018 and 2019 as split-plot based on randomized complete block design with three replications to evaluate physiological responses of rapeseed to fertilization treatments (control, chemical fertilizer, inoculation of seeds with PGPR, vermicompost and combined fertilizers) under different irrigation levels (irrigation after 70,100, 130, and 160 mm evaporation). Water stress increased the activities of catalase, polyphenol oxidase, peroxidase and superoxide dismutase and the contents of proline, soluble sugars and malondialdehyde and also leaf temperature, but decreased membrane stability index, chlorophyll content, leaf water content, stomatal conductance and grain yield. Application of fertilizers particularly combined fertilizers decreased proline content and leaf temperature, but increased the antioxidant enzymes activities, soluble sugars, chlorophyll content, leaf water content, membrane stability index, and stomatal conductance under different irrigation intervals. These superiorities of fertilization treatments were led to considerable improvement in grain yield. The results revealed that the combined fertilizer application improved most of the physiological parameters. It was deducted that the application of combined fertilizers reduced chemical fertilizer by about 67% and alleviated the deleterious effects of water limitation on field performance of rapeseed.  相似文献   

4.
The effects of putrescine and ethephon on peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.14.18.1), catalase (CAT; EC 1.11.1.6) activities and proline content in spinach leaves under saline stress were investigated. In control conditions, putrescine increased PPO and CAT activities and proline content, but decreased POD activity. Ethephon increased these three enzyme activities but did not affect proline content. In saline conditions, putrescine increased POD and CAT activities and proline content, while it decreased PPO activity. Ethephon increased both PPO and CAT activities and proline content, but decreased POD activity. Putrescine and ethephon have opposite effects on the enzyme activities and proline accumulation because they acts as antagonists.  相似文献   

5.
In order to investigate the effects of Glomus species on some physiological characteristics of two chickpea types (Pirouz cultivar of Desi type and ILC-482 of Kabuli type) under non-stress (NS) and drought stress, an experiment was conducted using a factorial arrangement based on completely randomized design with three replications. Drought stress decreased shoot and total dry weight in plants. However inoculation of plants with mycorrhiza improved these traits. Leaf chlorophyll content was decreased, but leaf proline content and guaiacol peroxidases (EC 1.11.1.7) (POD), catalase (EC 1.11.1.6) (CAT), and ascorbate peroxidase (EC 1.11.1.11) (APX) activities were increased as a result of drought stress. Drought stress had no significant effect on soluble protein content and polyphenol oxidase (EC 1.10.3.1) (PPO) enzymatic activity in chickpea plants. In general, drought stress and especially severe drought stress increased membrane lipid peroxidation (MDA) in chickpea plants, which was more evident in non-inoculated than in inoculated plants. Inoculation of chickpea by AM significantly increased POD and PPO activities compared with non-inoculated chickpea, but had no effect on CAT activity and proline content of leaves. The reaction of chickpea cultivars to inoculation by AM species and irrigation levels were different. ILC-482 showed that antioxidant enzymes activities were more and thus less MDA compared with Pirouz cultivar. In general, the most POD and PPO activities were recorded for inoculated plants with G. etunicatum and G. versiform species, and the most APX activity was observed in plants inoculated with G. intraradices.  相似文献   

6.
This study aims to understand the effects of salinity on the growth and oxidative stress enzymes of endophytic bacteria (Sphingomonas sp. LK11) and tomato plants. In response to salinity and gibberellic acid (GA4), catalase (CAT), superoxide dismutase, and reduced glutathione were significantly regulated in LK11 as compared to peroxidase (POD) and polyphenol oxidase (PPO). Salinity stress to tomato plants caused significant cessation in growth and biomass, which was accompanied by threefold increase in lipid peroxidation and decrease in glutathione, CAT, POD, and PPO activities. In contrast, sole and combined treatment of LK11 and GA4 rescued plant growth and biomass production whilst exhibited lower lipid peroxidation and higher glutathione content under salinity stress. The activities of CAT, POD, and PPO were either lower or nonsignificant as compared to control. In conclusion, inoculation of bacterial endophytes offers a relative stress counteracting potentials as evidenced by the known plant growth regulators.  相似文献   

7.
The effects of ethephon, an ethylene generating compound, and 2,5-norbornadiene (NBD), an inhibitor of ethylene action, on peroxidase (POD; EC 1.11.1.7), catalase (CAT; EC 1.11.1.6), polyphenol oxidase (PPO; EC 1.14.18.1) activities and proline content in salt-stressed spinach leaves were investigated. POD and PPO activities were increased by NaCl + ethephon + NBD combination and reduced by NBD. Also, ethephon increased the CAT activity while ethephon + NBD reduced CAT activity. NaCl + ethephon increased proline content. The antagonistic effect of ethephon and NBD was seen on POD and PPO activity and proline accumulation, but was not on CAT activity.  相似文献   

8.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

9.
The present work aimed to investigate the mechanisms of nitric oxide (NO) and reactive oxygen species (ROS) generations and to explore their roles in the regulation of antioxidative responses in the wheat leaves under salinity. Except for an insignificant change of NO content and nitrate reductase (NR) activity due to 50 mM NaCl, NO, hydrogen peroxide, superoxide anion (O2?-), hydroxyl radical (?OH), chlorophyll and malondialdehyde content, as well as activities of nitric oxide synthase, NR, peroxidases (POD), catalase (CAT), and ascorbate peroxidase rose in response to different NaCl concentrations. Meanwhile, leaf superoxide dismutase activity lowered only at 50 mM NaCl. NaCl-stimulatory effects on NO content as well as POD and CAT activities could be partly alleviated by the application of 2-phenyl-4,4,5,5-tetrame-thylimidazoline-3-oxide-1-oxyl (PTIO, NO scavenger), exogenous CAT, or diphenylene iodonium (DPI, NADPH oxidase inhibitor). Native polyacrylamide gel electrophoresis also showed that the amount of POD (especially POD4, POD5, and POD7) and CAT (especially CAT1, CAT2, and CAT3) isozymes increased with increasing salinity but decreased by application of PTIO, CAT, or DPI. Furthermore, histochemical staining showed a similar change of O2?- generation. In addition, the inhibition of diamineoxidase (DAO), polyamine oxidase (PAO), and cell wall-bound POD (cw-POD) activities in NaCl-stressed seedlings seemed to be insensitive to the application of PTIO or DPI. Taken together, salinity-induced NO, H2O2, and O2?- generation influenced each other and played different roles in the regulation of antioxidant enzyme activities in the leaves of wheat seedlings under NaCl treatment.  相似文献   

10.
土壤盐渍化严重影响小麦生产,提高小麦耐盐性是应对土壤盐渍化的主要生物途径之一.小麦芽期亦是对盐分较为敏感的时期,小麦芽期耐盐性的强弱对盐碱地小麦种植至关重要.为探讨利用叶片生理指标进行小麦芽期耐盐性评价的可行性,该文以沧麦6005及其73个叠氮化钠诱变家系为试验材料,在超纯水和40%人工海水条件下,对芽期叶片中脯氨酸、...  相似文献   

11.
马铃薯不同品种感染早疫病菌后防御酶活性变化   总被引:6,自引:0,他引:6  
通过测定抗性不同的马铃薯品种接种和未接种情况下叶片内防御酶活性,研究马铃薯品种对早疫病的抗性机制。结果表明,在接种处理后,各品种植株体内苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、多酚氧化酶(PPO)和过氧化氢酶(CAT)活性均提高,抗病品种酶活性增幅高于感病品种,说明上述4种酶与品种抗性有一定的关联。  相似文献   

12.
外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响   总被引:5,自引:0,他引:5  
采用营养液栽培法,研究外源谷胱甘肽(GSH)对NaCl胁迫下番茄幼苗生长、根系活力、电解质渗透率和丙二醛(MDA)、脯氨酸(Pro)、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性的影响,为利用外源物质减轻盐胁迫伤害提供理论依据。结果显示:(1)NaCl胁迫显著抑制了番茄幼苗的生长、根系活力和SOD、POD、CAT活性,提高了电解质渗透率及MDA、Pro、可溶性糖含量;(2)外源喷施GSH能够诱导NaCl胁迫下番茄幼苗叶片抗氧化酶SOD、POD、CAT活性上调,电解质渗透率及MDA含量下降,Pro和可溶性糖含量恢复至对照水平;(3)外源喷施还原型谷胱甘肽抑制剂(BSO)使NaCl胁迫下番茄幼苗的根系活力以及抗氧化酶SOD、POD、CAT活性下降,脯氨酸含量提高;(4)喷施GSH可诱导BSO和NaCl共处理番茄植株的根系活力、SOD、POD、CAT活性提高,MDA和Pro含量降低。研究表明,外源GSH可通过提高促进盐胁迫下番茄幼苗植株渗透调节能力及清除活性氧的酶促系统的防御能力、降低细胞膜脂过氧化程度、保护膜结构的完整性,从而有效缓解NaCl胁迫对番茄幼苗生长的抑制,提高其耐盐性。  相似文献   

13.
9个辣椒雄性不育材料花蕾生理生化特性研究   总被引:8,自引:0,他引:8  
以9个辣椒雄性不育材料及其相应的保持系为试材,对有关花器的植物学性状进行了系统观察和研究,测定了花蕾中过氧化物酶、过氧化氢酶、多酚氧化酶的活性和游离脯氨酸的含量。结果表明:供试9个雄性不育材料和保持系的主要花器性状有一定差异;雄性不育材料的过氧化物酶活性和多酚氧化酶活性均高于相应的保持系, 而过氧化氢酶活性低于保持系;保持系游离脯氨酸含量离于不育材料;所测的3种酶活性和脯氨酸含量在雄性不育材料与保持系间差异显著。  相似文献   

14.
Accumulation of proline in response to environmental stresses seems tobe widespread among plants. To elucidate the role of proline in plantresponses,in vivo and in vitro, we studied theeffect of proline on catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7)and polyphenol oxidase (PPO; EC 1.14.18.1). In vivo, thesethree enzymes were activated by proline, while CAT and POD were activated andPPO was inactivated by NaCl. In vitro, CAT and POD wereactivated and PPO was inactivated by proline. Proline appeared to protect thesethree enzyme activities. The significance of these findings with regard toenvironmental stress-induced proline accumulation in vivois discussed. The ability of proline to activate the enzymes may suggest alimited conformational change. These results are important for characterisationof metabolic responses to environmental stresses and can be used as a stressindicator.  相似文献   

15.
Fuchen Shi  Fang Bao 《生态学报》2007,(7):2733-2741
Salintiy and temperature are two important ecological factors which affect the distribution and abundance of Spartina alerniflora Loisel. To find out how cordgrass adapts to the environmental conditions in the introduced range, we studied the dynamics of a series of important physiological components including superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), malondialdehyde (MDA), soluble sugar and free proline under different salinity and temperature stresses. The results showed that low NaCl concentration (lower than 100 mmol·L?1) enhanced the growth of S. alterniflora. On the contrary, high NaCl concentration (higher than 100 mmol·L?1) inhibited the growth of S. alterniflora. To a certain extent, S. alterniflora was able to be acclimated to the osmotic pressure created by external solution concentration by adjusting the activities of POD, SOD and CAT, and the contents of free proline and soluble sugar. S. alterniflora varied in its responses to environment in different parts of the plant under 5°C and 38°C temperature stress. Compared with roots, leaves accumulated more soluble sugar, and CAT activities in leaves were higher, whereas SOD and POD activities in leaves were much lower than those in roots.  相似文献   

16.
It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of SA and sodium chloride (NaCl) on growth, metabolite accumulation, oxidative stress and enzymatic and non-enzymatic antioxidant responses on common bean plants (Phaseolus vulgaris, cv. F-15) was studied. Results revealed that either SA or NaCl decrease, shoot, root and total plant dry weights. SA treatments decreased the contents of proline, and reduced forms of ascorbate and glutathione, however, the content of soluble sugars (TSS), thiobarbituric acid-reactive substances (TBARs) and oxidized ascorbate remained unaffected. On the other hand, salinity significantly reduced the levels of endogenous SA but increased the content of proline, soluble sugars, TBARs, ascorbate and glutathione, as well as all increasing the levels of antioxidant enzyme activities assayed, except CAT. The application of SA improved the response of common bean plants to salinity by increasing plant dry weight and decreasing the content of organic solutes (proline and TSS) and damage to the membrane (TBARs). Moreover, SA application under saline conditions decreased the levels of antioxidant enzyme activities POX, APX and MDHAR which could indicate successful acclimatization of these plants to saline conditions.  相似文献   

17.
氮、磷、钾肥不同用量对花生生理特性及产量品质的影响   总被引:21,自引:0,他引:21  
在田间条件下研究了氮、磷、钾肥不同用量对花生叶片生理特性及产量品质的影响.结果表明:与不施肥处理相比,花生分别单独施用氮、磷、钾肥可提高叶片叶绿素、可溶性蛋白质含量和光合速率,增加SOD、POD和CAT活性,降低MDA积累量,以施N300~450kg.hm-2、施P5O2150~225kg.hm-2、施K2O300~450kg.hm-2的效果最显著;对叶片光合性能的改善,氮肥的作用主要在前期,磷在中后期,钾肥前后期比较一致.施肥可显著提高花生荚果产量,随施氮量的增加花生产量显著提高,施磷、钾肥以中等施肥量(P5O2150kg.hm-2、K2O300kg.hm-2)花生产量最高,钾肥的增产作用大于氮、磷肥.少量施用磷、钾肥(P2O575kg.hm-2、K2O150kg.hm-2)可显著增加花生籽仁蛋白质和脂肪含量,少量施用氮肥(N150kg.hm-2)可显著增加蛋白质含量,大量施用氮肥(N450kg.hm-2)才可显著增加脂肪含量;磷肥对提高籽仁蛋白质和脂肪含量效果明显,氮肥对增加蛋白质含量作用较大,钾肥主要提高了可溶性糖含量.施用氮、磷、钾肥可增加花生籽仁的赖氨酸、蛋氨酸和油酸、亚油酸含量,提高油酸/亚油酸比值,从而改善花生营养品质,延长花生制品的货价寿命.  相似文献   

18.
张钰  唐明 《菌物学报》2021,40(5):1110-1122
本研究以青杨Populus cathayana1年生扦插苗为试验材料,接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)异形根孢囊霉Rhizophagus irregularis和杨树溃疡病菌聚生小穴壳菌Dothiorella gregaria,测定AMF对青杨根茎叶生物量,丙二醛(M...  相似文献   

19.
以盐敏感型黄瓜品种‘津春2号’为材料,研究了丛枝菌根真菌(AMF)对盐胁迫下黄瓜幼苗生长及叶片、根系中渗透调节物质含量和抗氧化酶活性的影响.结果表明:(1)在盐胁迫条件下,黄瓜幼苗生长受到明显抑制,其株高、地上部、地下部干鲜重均明显减小,同时体内可溶性蛋白、可溶性糖、脯氨酸和MDA含量,以及O2(÷)产生速率和SOD、POD、CAT活性均比对照显著升高.(2)盐胁迫下接种AMF可显著促进黄瓜植株的生长,进一步提高黄瓜幼苗体内可溶性蛋白、可溶性糖和脯氨酸含量及SOD、POD、CAT活性,而显著降低MDA含量和O2(÷)产生速率.研究表明,AMF可通过显著促进盐胁迫下黄瓜幼苗体内渗透调节物质积累和抗氧化酶活性提高,有效降低体内膜脂过氧化水平,从而缓解盐胁迫对植株的伤害,增强黄瓜幼苗对盐胁迫的耐性.  相似文献   

20.
Shi F C  Bao F 《农业工程》2007,27(7):2733-2741
Salintiy and temperature are two important ecological factors which affect the distribution and abundance of Spartina alerniflora Loisel. To find out how cordgrass adapts to the environmental conditions in the introduced range, we studied the dynamics of a series of important physiological components including superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), malondialdehyde (MDA), soluble sugar and free proline under different salinity and temperature stresses. The results showed that low NaCl concentration (lower than 100 mmol·L−1) enhanced the growth of S. alterniflora. On the contrary, high NaCl concentration (higher than 100 mmol·L−1) inhibited the growth of S. alterniflora. To a certain extent, S. alterniflora was able to be acclimated to the osmotic pressure created by external solution concentration by adjusting the activities of POD, SOD and CAT, and the contents of free proline and soluble sugar. S. alterniflora varied in its responses to environment in different parts of the plant under 5°C and 38°C temperature stress. Compared with roots, leaves accumulated more soluble sugar, and CAT activities in leaves were higher, whereas SOD and POD activities in leaves were much lower than those in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号