首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was to investigate defense mechanisms on cassava induced by salicylic acid formulation (SA) against anthracnose disease. Our results indicated that the SA could reduce anthracnose severity in cassava plants up to 33.3% under the greenhouse condition. The β-1,3-glucanase and chitinase enzyme activities were significantly increased at 24 hours after inoculation (HAI) and decrease at 48 HAI after Colletotrichum gloeosporioides challenge inoculation, respectively, for cassava treated with SA formulation. Synchrotron radiation–based Fourier-transform infrared microspectroscopy spectra revealed changes of the C=H stretching vibration (3,000–2,800 cm−1), pectin (1,740–1,700 cm−1), amide I protein (1,700–1,600 cm−1), amide II protein (1,600–1,500 cm−1), lignin (1,515 cm−1) as well as mainly C–O–C of polysaccharides (1,300–1,100 cm−1) in the leaf epidermal and mesophyll tissues treated with SA formulations, compared to those treated with fungicide carbendazim and distilled water after the challenged inoculation with C. gloeosporioides. The results indicate that biochemical changes in cassava leaf treated with SA played an important role in the enhancement of structural and chemical defense mechanisms leading to reduced anthracnose severity.  相似文献   

2.
The mechanisms of control and efficacy of Trichoderma harzianum strain DGA01 against anthracnose-causing pathogen Colletotrichum gloeosporioides in mango cv. ‘Carabao’ were examined. The action of DGA01 towards C. gloeosporioides was mycoparasitism and production of metabolites. DGA01 parasitised the pathogen by coiling its mycelia and spores on both artificial media and mango fruit surfaces. DGA01 was a parasitic necrotroph capable of killing C. gloeosporioides in 14 days of coexistence in artificial media. Dipping fruit in conidial suspension (106?mL?L?1) of DGA01 significantly decreased the incidence of anthracnose as compared to untreated fruit. Reduction in anthracnose severity was 87.90% showing high antagonistic potential of DGA01 in vivo.  相似文献   

3.
Bacillus amyloliquefaciens strain DGA14 was tested for in vitro antagonism towards Colletotrichum gloeosporioides, a causal pathogen of anthracnose in mango cv. ‘Carabao’. DGA14 produced extracellular metabolites in solid and liquid media that suppressed the growth of C. gloeosporioides. The cells of DGA14 were often observed adjacent to the pathogen so affecting its spore germination and mycelium development. DGA14 colonised mango fruit 48 h after artificial inoculation and persisted 14 days after storage at 18–20°C. On fruit surfaces, DGA14 attached and produced dents to spores of C. gloeosporioides. Dipping mangoes in aqueous cell suspension (108 mL L?1) of DGA14 significantly decreased the incidence of anthracnose as compared to untreated fruit.  相似文献   

4.
Abstract

The study investigates the presence and quantity of antimicrobial sinigrin glucosinolates in tomato leaves after spraying them with moringa (Moringa oleifera) leaf extract (MLAE). Moringa concentrates (0.5, 0.75, 1.00 and 1.5?kg?L?1 (w v?1)) were prepared. Distilled water was the control. Sampled tomato leaves were air-dried, freeze-dried and extracted firstly using pure methanol in a hot water bath and then pellet re-extracted using 5?mL of hot aqueous methanol (70% v v?1). An ion exchange column, and sulphatase was used to achieve glucosiodesulphonation. High performance liquid chromatography (HPLC) was employed in the identification and quantitative analysis of the sinigrin glucosinolates. Tomato (Solanum lycopersicum) leaves treated with MLAE revealed highly significant (p?<?.001) content of sinigrin glucosinolates. The sinigrin standard and the desulphated sinigrin glucosinolates had a 7?s retention time difference; 5?kg?L?1 (w v?1) resulted in a superior amount of sinigrin in tomato leaves as compared to all the other MLAE concentrations. The study reveals that spraying MLAE on putatively diseased tomato leaves donates specific quantifiable glucosinolates like sinigrin, which may be involved in defense against tomato diseases and, hence, recommends use of 5?kg?L?1 (w v?1) for the highest sinigrin defense tag.  相似文献   

5.
This study investigated the effect of silicon (Si) on resistance of bean plants (cv. ‘Peróla’) to anthracnose, caused by Colletotrichum lindemuthianum, grown in a nutrient solution containing 0 (?Si) or 2 mmol Si L?1 (+Si). The concentration of Si in leaf tissue and the incubation period increased by 55.2% and 14.3%, respectively, in +Si plants in relation to ?Si plants. The area under anthracnose progress curve and the severity estimated by the software QUANT significantly decreased by 32.9% and 27%, respectively, for +Si plants. Si did not affect the concentration of total soluble phenolics. Chitinases activity was higher in the advanced stages of infection by C. lindemuthianum for leaves of ?Si plants. β‐1,3‐Glucanase activity increased after C. lindemuthianum infection, but it was not enhanced by Si. Peroxidase and polyphenoloxidase activities had no apparent effect on the resistance of bean plants to anthracnose, regardless of the presence of Si. The increase in lignin concentration as well as on the phenylalanine ammonia‐lyase and lipoxygenase activities were important for the resistance of +Si plants against anthracnose. The results of this study suggest that Si may increase resistance to anthracnose in bean plants by enhancing certain biochemical mechanisms of defence as opposed to just acting as a physical barrier to penetration by C. lindemuthianum.  相似文献   

6.

A conspicuous bioluminescence during nighttime was reported in an aquaculture farm in the Cochin estuary due to Gonyaulax spinifera bloom on March 20, 2020. In situ measurements on bioluminescence was carried out during nighttime to quantify the response of G. spinifera to various mechanical stimuli. The bioluminescence intensity (BI) was measured using Glowtracka, an advanced single channel sensor, attached to a Conductivity–Temperature–Depth Profiler. In steady environment, without any external stimuli, the bioluminescence generated due to the movement of fishes and shrimps in the water column was not detected by the sensor. However, stimuli such as a hand splash, oar and swimming movements, and a mixer could generate measurable bioluminescence responses. An abundance of?~?2.7?×?106 cells L?1 of G. spinifera with exceptionally high chlorophyll a of 25 mg m?3 was recorded. The BI in response to hand splash was recorded as high as 1.6?×?1011 photons cm?2 s?1. Similarly, BI of?~?1–6?×?1010 photons cm?2 s?1 with a cumulative bioluminescence of?~?2.51?×?1012 photons cm?2 (for 35 s) was recorded when there is a mixer with a constant force of 494 N/800 rpm min?1. The response of G. spinifera was spontaneous with no time lapse between application of stimuli and the bioluminescence response. Interestingly, in natural environment, application of stimulus for longer time periods (10 min) does not lower the bioluminescence intensity due to the replenishment of water thrusted in by the mixer from surrounding areas. We also demonstrated that the bioluminescence intensity decreases with increase in distance from the source of stimuli (mixer) (av. 1.84?×?1010 photons cm?2 s?1 at 0.2 m to av. 0.05?×?1010 photons cm?2 s?1 at 1 m). The BI was highest in the periphery of the turbulent wake generated by the stimuli (av. 3.1?×?1010 photons cm?2 s?1) compared to the center (av. 1.8?×?1010 photons cm?2 s?1). When the stimuli was applied vertically down, the BI decreased from 0.2 m (0.3?×?1010 photons cm?2 s?1) to 0.5 m (0.10?×?1010 photons cm?2 s?1). Our study demonstrates that the BI of G. spinifera increases with increase in mechanical stimuli and decreases with increase in distance from the stimuli.

  相似文献   

7.
(R)-1,3-butanediol ((R)-1,3-BD) is an important substrate for the synthesis of industrial chemicals. Despite its large demand, a bioprocess for the efficient production of 1,3-BD from renewable resources has not been developed. We previously reported the construction of recombinant Escherichia coli that could efficiently produce (R)-1,3-BD from glucose. In this study, the fermentation conditions were optimized to further improve 1,3-BD production by the recombinant strain. A batch fermentation was performed with an optimized overall oxygen transfer coefficient (82.3?h?1) and pH (5.5); the 1,3-BD concentration reached 98.5?mM after 36?h with high-yield (0.444?mol (mol glucose)?1) and a high maximum production rate (3.63?mM?h?1). In addition, a fed-batch fermentation enabled the recombinant strain to produce 174.8?mM 1,3-BD after 96?h cultivation with a yield of 0.372?mol (mol glucose)?1, a maximum production rate of 3.90?mM?h?1, and a 98.6% enantiomeric excess (% ee) of (R)-1,3-BD.  相似文献   

8.
The CO2 and H2O vapour exchange of single attached orange, Citrus sinensis (L.), leaves was measured under laboratory conditions using infrared gas analysis. Gaseous diffusive resistances were derived from measurements at a saturating irradiance and at a leaf temperature optimum for photosynthesis. Variation in leaf resistance (within the range 1.6 to 60 s cm-1) induced by moisture status, or by cyclic oscillations in stomatal aperture, was associated with changes in both photosynthesis and transpiration. At low leaf resistance (ri less than 10 s cm-1) the ratio of transpiration to photosynthesis declined with reduced stomatal aperture, indicating a tighter stomatal control over H2O vapour loss than over CO2 assimilation. At higher leaf resistance (ri greater than 10 s cm-1) changes in transpiration and photosynthesis were linearly related, but leaf resistance and mesophyll resistance were also positively correlated, so that strictly stomatal control of photosynthesis became more apparent than real. This evidence, combined with direct measurements of CO2 diffusive resistances (in a -O2 gas stream) emphasised the presence of a significant mesophyll resistance; i.e., an additional and rate limiting resistance to CO2 assimilation over and above that encountered by H2O vapour escaping from the leaf.  相似文献   

9.
Colletotrichum gloeosporioides causes anthracnose, the most severe foliar disease of field-grown water yam (Dioscorea alata). The inheritance of resistance to a moderately virulent (FGS) strain of the pathogen was investigated in crosses between tetraploid D. alata genotypes: TDa 95/00328 (resistant)×TDa 95–310 (susceptible) (cross A), and TDa 85/00257 (resistant)×TDa 92–2 (susceptible) (cross B). Segregation of F1 progeny fitted genetic ratios of 3:1, 5:1 (crosses A and B) and 7:1 (cross A) resistant:susceptible when inoculated with the FGS strain, indicating that resistance is dominantly inherited and suggesting that more than one gene controls the inheritance of resistance to this strain in the accessions studied. When parental and progeny lines of cross A were inoculated with an aggressive (SGG) strain of the pathogen, all plants expressed a susceptible phenotype, indicating strain-specific resistance in TDa 95/00328. Screening of 20 cultivars/landraces confirmed the high susceptibility of D. alata accessions to the SGG strain and revealed the presence of apparent strain non-specific resistance in TDa 85/00257. TDa 85/00257 and TDa 87/01091 which were resistant to the SGG strain, will be useful both as sources of resistance and in the development of a host differential series for D. alata. Received: 15 May 2000 / Accepted: 18 October 2000  相似文献   

10.
Anthracnose, caused by the hemibiotrophic fungal pathogen Colletotrichum lindemuthianum is a devastating disease of common bean. Resistant cultivars are economical means for defense against this pathogen. In the present study, we mapped resistance specificities against 7 C. lindemuthianum strains of various geographical origins revealing differential reactions on BAT93 and JaloEEP558, two parents of a recombinant inbred lines (RILs) population, of Meso-american and Andean origin, respectively. Six strains revealed the segregation of two independent resistance genes. A specific numerical code calculating the LOD score in the case of two independent segregating genes (i.e. genes with duplicate effects) in a RILs population was developed in order to provide a recombination value (r) between each of the two resistance genes and the tested marker. We mapped two closely linked Andean resistance genes (Co-x, Co-w) at the end of linkage group (LG) B1 and mapped one Meso-american resistance genes (Co-u) at the end of LG B2. We also confirmed the complexity of the previously identified B4 resistance gene cluster, because four of the seven tested strains revealed a resistance specificity near Co-y from JaloEEP558 and two strains identified a resistance specificity near Co-9 from BAT93. Resistance genes found within the same cluster confer resistance to different strains of a single pathogen such as the two anthracnose specificities Co-x and Co-w clustered at the end of LG B1. Clustering of resistance specificities to multiple pathogens such as fungi (Co-u) and viruses (I) was also observed at the end of LG B2.  相似文献   

11.
Abstract

Anoxybacillus (A. flavithermus, A. kamchatkensis subsp. asachharedens, A. caldiproteolyticus and A. tepidamans) and Geobacillus (two strains of G. thermodenitrificans, G. thermoglucosidans and G. vulcanii) isolates and reference strains in whole milk were evaluated for their biofilm production on six different abiotic surfaces. G. thermodenitrificans DSM 465T had the highest cell counts (>4 log10 CFU cm?2) on glass and stainless steel (SS) at 55 and 65?°C, respectively. G. thermodenitrificans D195 had the highest counts on SS at 55?°C (>5 log10 CFU cm?2) and polyvinyl chloride (PVC) at 65?°C (>4 log10 CFU cm?2), indicating the existence of strain variation. The ideal surfaces for all strains were SS and glass at 55?°C, but their preferences were polystyrene and SS at 65?°C. Moreover, Anoxybacillus members were more prone to form biofilms in skim milk than in semi-skim and whole milk, whereas the results were the opposite for Geobacillus. Both the attachment and sporulation of Geobacillus in whole milk was higher than in semi-skim or skim milk. This study proposes that the surface material, temperature and milk type had a cumulative effect on biofilm formation.  相似文献   

12.
A pH-sensitive ciprofloxacin prodrug was synthesized and targeted against biofilms of the periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). The dose required to reduce the viability of a mature biofilm of Aa by ~80% was in the range of ng?cm?2 of colonized area (mean biofilm density 2.33?×?109?cells?cm?2). A mathematical model was formulated that predicts the temporal change in the concentration of ciprofloxacin in the Aa biofilm as the drug is released and diffuses into the bulk medium. The predictions of the model were consistent with the extent of killing obtained. The results demonstrate the feasibility of the strategy to induce mortality, and together with the mathematical model, provide the basis for design of targeted antimicrobial prodrugs for the topical treatment of oral infections such as periodontitis. The targeted prodrug approach offers the possibility of optimizing the dose of available antimicrobials in order to kill a chosen pathogen while leaving the commensal microbiota relatively undisturbed.  相似文献   

13.
Yam anthracnose is caused by the pathogen Colletotrichum gloeosporioides Penz. and has been identified as the most important biotic constraint to yam production worldwide. Rapid assessment of the disease is vital to its effective diagnosis and management. In this study, tissue-cultured yam plantlets of five lines of Dioscorea alata and nine of D. rotundata were rapidly assessed for their reactions to two isolates of yam anthracnose. The plantlets, obtained from meristem of the nodal cuttings, were grown for 8?weeks on Murashige and Skoog (MS) basal medium, acclimatised for 3?weeks, hardened for an additional 3?weeks, arranged in screen house in completely randomised design and sprayed with spore inocula prepared from 7?day-old culture of the two strains of Colletotrichum gloeosporioidies Penz. The relative resistance of the different Dioscorea spp. was evaluated using three disease indices – severity at seventh day after inoculation, SD7; area under disease progress curve, AUDPC; and disease severity rate, Rd. A modified rank-sum classification method put TDa 1425 and TDr 2040, with rank sum of 2.0 each, as resistant. TDr 2121, TDr 2287 and TDr 2048 were susceptible with rank sum of 27.50, 25.50 and 24.50, respectively. Dioscorea alata TDa 1425 and Dioscorea rotundata TDr 2040 were recommended in areas endemic with yam anthracnose, and also as parent lines while breeding for resistance to anthracnose.  相似文献   

14.
The influences of illumination, temperature, and soil water potential during development on leaf thickness, mesophyll cell wall area per unit leaf area (Ames/A), and the cellular CO2, resistance expressed on a mesophyll cell wall area basis (rCO2cell,) were examined for Plectranthus parviflorus Henckel. Although the ranges of all three growth conditions caused at least 9-fold variations in the leaf biomass produced in 4 weeks, only the illumination had a major effect on internal leaf morphology, e.g. the thickness went from 279 to 831 μm and Ames/A from 10.5 to 34.8 as the photosynthetically active radiation was raised from 3 to 53 nEinsteins cm?2 s?1, while rCO2cell remained close to 154 s cm?1. Variations in the growth temperature, soil water potential, and the nutritional status of the plant, affected photosynthesis mainly by changes in rCO2cell. To compare the influence of internal leaf area on photosynthesis for other plants, especially those with low Ames/A values, the maximum rates of CO2 uptake at light saturation and photosynthetically optimal temperatures were also determined for a moss, Mnium ciliare (C. Muell.) Schimp., and two ferns, Adiantum decorum Moore and Alsophila australe R. Br. As Ames/A went from 2.00 for the moss to 3.8, 7.5, 11.7, and 20.8 for the fens, the illumination at light saturation and the maximum rate of photosynthesis both progressively increased. The cellular CO2 resistance, which theoretically might have a lower limit of 20 s cm?1, ranged from 85 to 190 s cm?1.  相似文献   

15.
The i.r. spectra for aqueous solutions of sulfated glycosaminoglycans and model compounds in the transmittance “window” region of the solvent (1400-950 cm?1) are dominated by the strong and complex absorption centered at ~1230 cm?1 and associated with the antisymmetric stretching vibrations of the SO groups. Primary and secondary O-sulfate groups absorb at somewhat higher frequencies (1260-1200 cm?1) than N-sulfates (~1185 cm?1). Each sulfate band lends itself to quantitative applications, especially within a given class of sulfated polysaccharide. Laser-Raman spectra of heparin and model compounds have been obtained in aqueous solution and in the solid state. The most-prominent Raman peak (at ~1060 cm?1) is attributable to the symmetrical vibration of the SO groups, with N-sulfates emitting at somewhat lower frequencies (~1040 cm?1) than O-sulfates. The Raman pattern in the 950-800 cm?1 region (currently used in the i.r. for distinguishing between types of sulfate groups) also involves vibrations that are not localized only in the COS bonds.  相似文献   

16.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

17.
A chemolithoautotrophic arsenite-oxidizing bacterium, designated strain KGO-5, was isolated from arsenic-contaminated industrial soil. Strain KGO-5 was phylogenetically closely related with Sinorhizobium meliloti with 16S rRNA gene similarity of more than 99%, and oxidized 5?mM arsenite under autotrophic condition within 60?h with a doubling time of 3.0?h. Additions of 0.01–0.1% yeast extract enhanced the growth significantly, and the strain still oxidized arsenite efficiently with much lower doubling times of approximately 1.0?h. Arsenite-oxidizing capacities (11.2–54.1?μmol?h?1?mg dry cells?1) as well as arsenite oxidase (Aio) activities (1.76–10.0?mU?mg protein?1) were found in the cells grown with arsenite, but neither could be detected in the cells grown without arsenite. Strain KGO-5 possessed putative aioA gene, which is closely related with AioA of Ensifer adhaerens. These results suggest that strain KGO-5 is a facultative chemolithoautotrophic arsenite oxidizer, and its Aio is induced by arsenic.  相似文献   

18.
We studied water loss in eight insular populations of the lizard Anolis cristatellus wileyae and in one population of A. ernestwilliamsi in the British Virgin Islands. We found a strong negative correlation between habitat aridity and total and cutaneous water loss rate (ranging from 1.5–10.3 mg g?1 h?l) and a strong positive correlation between habitat aridity and integument resistance to water loss (28.5?199.0 s cm?1). Water loss and integumentary resistance of A. ernestwilliamsi were similar to what would be predicted for A. cristatellus living in the same habitat. The Guana Island population of A. cristatellus was significantly different from all other populations. We believe two processes are responsible; phenotypic plasticity explains most of the observed variability, but genetic differentiation may be responsible for the distinction of lizards from Guana.  相似文献   

19.
Solid-phase synthesis was used for the preparation of pyroglutamyl-histidyl-p-nitrophenylalanyl-phenylalanyl-alanyl-leucine amide (I) and glycyl-glycyl-histidyl-p-nitrophenylalanyl-phenylalanyl-alanyl-leucine amide (II), two water-soluble and sensitive chromophoric substrates of chicken pepsin, hog pepsin A, and bovine spleen cathepsin D. The kinetic constants of hydrolysis of the p-nitrophenylalanyl-phenylalanyl bond of the substrates were measured by difference spectrophotometry at 308 nm (Δ? = 860 m?1 cm?1) and by ninhydrin colorimetry (substrate I, ?570 = 2.31 × 104m?1 cm?1). The pH optimum of cleavage is 5 for the pepsins and 3.7 for cathepsin D. Since all three proteinases still have a significant activity at pH 5.5–6 a new, simple assay was designed for submicrogram quantities of pepsins in the presence of pepsinogens without interference of the latter. The method is particularly suitable for the analyses of the zymogen activation mixtures.  相似文献   

20.
Electrocatalysts that are stable and highly active at low overpotential (η) under mild conditions as well as cost‐effective and scalable are eagerly desired for potential use in photo‐ and electro‐driven hydrogen evolution devices. Here the fabrication and characterization of a super‐active and robust Cu‐CuxO‐Pt nanoparticulate electrocatalyst is reported, which displays a small Tafel slope (44 mV dec?1) and a large exchange current density (1.601 mA cm?2) in neutral buffer solution. The catalytic current density of this catalyst film reaches 500 mA cm?2 at η = ?390 ± 12 mV and 20 mA cm?2 at η = ?45 ± 3 mV, which are significantly higher than the values displayed by Pt foil and Pt/C electrodes in neutral buffer solution and even comparable with the activity of Pt electrode in 0.5 m H2SO4 solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号