首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dipicolinic acid was extracted from approximately 0.1 mg spores or 0.5 ml of sporulating culture with 20 mM HCl for 10 min at 100 degrees C. The suspension was diluted with 5 mM Ca2+, 100 mM Tris, pH 7.6, centrifuged, and the first derivative of the uv absorbance spectrum recorded from 275 nm to 285 nm. DPA concentration was determined from the difference between the maximum at 276.6 nm and the minimum at 280 nm. The use of the difference between two first derivative values removed possible interference from sloping baselines. Turbidity, nucleic acids, and bacteriological media did not interfere. Analysis time for four extracts was 4 min using a spectrophotometer reading at 0.1-nm intervals. Dipicolinate at 0.1 mM gave 0.184 absorbance/nm at 25 degrees C. The coefficient of variation was 1.5%, and the detection limit 1 microM.  相似文献   

2.
3.
4.
5.
6.
This study is aimed at the development and application of a convenient and rapid optical assay to monitor the wet-heat resistance of bacterial endospores occurring in food samples. We tested the feasibility of measuring the release of the abundant spore component dipicolinic acid (DPA) as a probe for heat inactivation. Spores were isolated from the laboratory type strain Bacillus subtilis 168 and from two food product isolates, Bacillus subtilis A163 and Bacillus sporothermodurans IC4. Spores from the lab strain appeared much less heat resistant than those from the two food product isolates. The decimal reduction times (D values) for spores from strains 168, A163, and IC4 recovered on Trypticase soy agar were 1.4, 0.7, and 0.3 min at 105 degrees C, 120 degrees C, and 131 degrees C, respectively. The estimated Z values were 6.3 degrees C, 6.1 degrees C, and 9.7 degrees C, respectively. The extent of DPA release from the three spore crops was monitored as a function of incubation time and temperature. DPA concentrations were determined by measuring the emission at 545 nm of the fluorescent terbium-DPA complex in a microtiter plate fluorometer. We defined spore heat resistance as the critical DPA release temperature (Tc), the temperature at which half the DPA content has been released within a fixed incubation time. We found Tc values for spores from Bacillus strains 168, A163, and IC4 of 108 degrees C, 121 degrees C, and 131 degrees C, respectively. On the basis of these observations, we developed a quantitative model that describes the time and temperature dependence of the experimentally determined extent of DPA release and spore inactivation. The model predicts a DPA release rate profile for each inactivated spore. In addition, it uncovers remarkable differences in the values for the temperature dependence parameters for the rate of spore inactivation, DPA release duration, and DPA release delay.  相似文献   

7.
8.
Spores of Bacillus subtilis with a mutation in spoVF cannot synthesize dipicolinic acid (DPA) and are too unstable to be purified and studied in detail. However, the spores of a strain lacking the three major germinant receptors (termed Deltager3), as well as spoVF, can be isolated, although they spontaneously germinate much more readily than Deltager3 spores. The Deltager3 spoVF spores lack DPA and have higher levels of core water than Deltager3 spores, although sporulation with DPA restores close to normal levels of DPA and core water to Deltager3 spoVF spores. The DPA-less spores have normal cortical and coat layers, as observed with an electron microscope, but their core region appears to be more hydrated than that of spores with DPA. The Deltager3 spoVF spores also contain minimal levels of the processed active form (termed P(41)) of the germination protease, GPR, a finding consistent with the known requirement for DPA and dehydration for GPR autoprocessing. However, any P(41) formed in Deltager3 spoVF spores may be at least transiently active on one of this protease's small acid-soluble spore protein (SASP) substrates, SASP-gamma. Analysis of the resistance of wild-type, Deltager3, and Deltager3 spoVF spores to various agents led to the following conclusions: (i) DPA and core water content play no role in spore resistance to dry heat, dessication, or glutaraldehyde; (ii) an elevated core water content is associated with decreased spore resistance to wet heat, hydrogen peroxide, formaldehyde, and the iodine-based disinfectant Betadine; (iii) the absence of DPA increases spore resistance to UV radiation; and (iv) wild-type spores are more resistant than Deltager3 spores to Betadine and glutaraldehyde. These results are discussed in view of current models of spore resistance and spore germination.  相似文献   

9.
10.
11.
A gas-liquid chromatographic procedure has been developed to quantitate dipicolinic acid in bacterial spores. The culture, washed from a plate, was hydrolyzed with acid containing the internal standard, pyridine-2,4-dicarboxylate, and then extracted into methyl isobutyl ketone. The internal standard and dipicolinic acid were then extracted into a small volume of trimethylphenylammonium hydroxide. Injection of the resultant quaternary ammonium salts into a gas chromatograph yielded, via thermal decomposition, the methyl ester derivatives of the dipicolinic acid and the internal standard. The amount of dipicolinic acid in the sample was determined from a standard curve. The method was sensitive to 100 ng of dipicolinic acid per sample and was 1,000 to 5,000 times more sensitive than the commonly used methods. Preparation of the sample required less than 1.5 h and less than 15 min of the analyst's time.  相似文献   

12.
13.
14.
Spores of Clostridium perfringens possess high heat resistance, and when these spores germinate and return to active growth, they can cause gastrointestinal disease. Work with Bacillus subtilis has shown that the spore's dipicolinic acid (DPA) level can markedly influence both spore germination and resistance and that the proteins encoded by the spoVA operon are essential for DPA uptake by the developing spore during sporulation. We now find that proteins encoded by the spoVA operon are also essential for the uptake of Ca(2+) and DPA into the developing spore during C. perfringens sporulation. Spores of a spoVA mutant had little, if any, Ca(2+) and DPA, and their core water content was approximately twofold higher than that of wild-type spores. These DPA-less spores did not germinate spontaneously, as DPA-less B. subtilis spores do. Indeed, wild-type and spoVA C. perfringens spores germinated similarly with a mixture of l-asparagine and KCl (AK), KCl alone, or a 1:1 chelate of Ca(2+) and DPA (Ca-DPA). However, the viability of C. perfringens spoVA spores was 20-fold lower than the viability of wild-type spores. Decoated wild-type and spoVA spores exhibited little, if any, germination with AK, KCl, or exogenous Ca-DPA, and their colony-forming efficiency was 10(3)- to 10(4)-fold lower than that of intact spores. However, lysozyme treatment rescued these decoated spores. Although the levels of DNA-protective alpha/beta-type, small, acid-soluble spore proteins in spoVA spores were similar to those in wild-type spores, spoVA spores exhibited markedly lower resistance to moist heat, formaldehyde, HCl, hydrogen peroxide, nitrous acid, and UV radiation than wild-type spores did. In sum, these results suggest the following. (i) SpoVA proteins are essential for Ca-DPA uptake by developing spores during C. perfringens sporulation. (ii) SpoVA proteins and Ca-DPA release are not required for C. perfringens spore germination. (iii) A low spore core water content is essential for full resistance of C. perfringens spores to moist heat, UV radiation, and chemicals.  相似文献   

15.
16.
17.
Natural-abundance solid-state 13C nuclear magnetic resonance spectra were obtained for bacterial spores for the first time by using the technique of cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. A resonance at about 150 ppm, detectable in spore samples having a Mn content of less than 0.05%, was consistent with an identification as the alpha-carbon signal of calcium dipicolinate; this signal was missing from a spore sample treated with acid to release dipicolinate and from a spore coat preparation. Carbohydrate peaks were particularly intense in spores and coat preparations of Bacillus macerans. Signals ascribable to beta-hydroxybutyrate were prominent in a B. cereus sample.  相似文献   

18.
The DNA in spores of Bacillus species exhibits a relatively novel photochemistry, as 5-thyminyl-5,6-dihydrothymine (spore photoproduct (SP)) is by far the major UV photoproduct whereas cyclobutane dimers (CPDs) and (6-4) photoproducts (6-4PPs) are the major photoproducts in growing cells. Dehydration and more importantly complexation of DNA by alpha/beta-type small, acid-soluble spore proteins (SASP) have been shown to partly explain the photochemistry of spore DNA. The large amount ( approximately 10% of dry weight) of the spore's dipicolinic acid (DPA) also has been shown to play a role in spore DNA photochemistry. In the present work we showed by exposing spores of various strains of B. subtilis to UVC radiation that DPA photosensitizes spore DNA to damage and favors the formation of SP. The same result was obtained in either the presence or absence of the alpha/beta-type SASP that saturate the spore chromosome. Addition of DPA to dry films of isolated DNA or to frozen solutions of thymidine also led to a higher yield of SP and increased ratio of CPDs to 6-4PPs; DPA also significantly increased the yield of CPDs in thymidine exposed to UVC in liquid solution. These observations strongly support a triplet energy transfer between excited DPA and thymine residues. We further conclude that the combined effects of alpha/beta-type SASP and DPA explain the novel photochemistry of DNA in spores of Bacillus species.  相似文献   

19.
The content of dipicolinic acid (DPA) was assayed in the spores of Bacillus anthracoides 96 during various stages of its growth. The content of DPA was ca. 10.7 per cent of the dry biomass weight in the seven-day-old culture containing 96 to 99 per cent of the spores in a "starvation" medium. The morphology of the culture was modified, and the content of DPA in the spores fell to 3.6 per cent half an hour after the inoculation into the medium favourable for the growth (MPA). During the following one to four hours of the germination, the refraction index of the spores and the content of DPA in them decreased (the content of DPA to 2 per cent).  相似文献   

20.
Phosphorylation coupled to oxidation in bacterial extracts   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号