首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Corn ( Zea mays L.) glutathione S-transferases (EC 2.5.1.18) have attracted interest, in part, due to their involvement in the metabolism of several herbicides, including atrazine and alachlor. Three corn, glutathione S-transferases have been purified, and cDNA clones have been isolated and sequenced for two of these, GST I and GST III. In addition to showing some amino acid sequence similarity to each other, the two sequenced corn glutathione S-transferases also show some similarity to rat and human enzymes. The corn glutathione S-transferases responsible for atrazine tolerance have not yet been purified or cloned, but purification attempts indicate that corn has two glutathione S-transferases with activity towards atrazine. While many glutathione S-transferases from various organisms have been detected by using 1-chloro-2,4-dinitrobenzene as a substrate, the atrazine-specific glutathione S-transferases have very little or no activity with 1-chloro-2,4-dinitrobenzene. This shows the importance of assaying with a variety of substrates when characterizing glutathione S-transferases.  相似文献   

2.
Presence of a new form of glutathione S-transferase has been demonstrated in human erythrocytes. using two different affinity ligands this enzyme has been separated from the previously characterized glutathione S-transferases ?. The new enzyme is highly basic with a pI of > 10. The new enzyme which represents less than 5 percent of glutathione-S-transferase activity towards 1-chloro-2,4-dinitrobenzene as substrate and about 10 percent of total glutathione S-transferase protein of erythrocytes has different amino acid composition, substrate specificities, and immunological characteristics from those of the major erythrocyte glutathione S-transferase ?. Immunological properties of the new enzyme indicate that this form may be different from other glutathione S-transferases of human tissues.  相似文献   

3.
High glutathione S-transferase activity was found in the cytosol of F-cells from the hepatopancreas of the blue crab (Callinectes sapidus). Purification of glutathione S-transferase from hepatopancreas extracts by Sephadex G-200, DEAE-Sephacel, and chromatofocusing resulted in the isolation of two isozymes with isoelectric points of 5.9 and 5.7, as determined by analytical isoelectric focusing. Using 1-chloro-2,4-dinitrobenzene as the substrate the specific activities of the two purified isozymes were 222 and 182 mumol/min/mg, respectively. There was no evidence for basic transferase isozymes. In addition to 1-chloro-2,4-dinitrobenzene the purified glutathione S-transferase isozymes showed activity with p-nitrophenyl acetate, p-nitrobenzyl chloride, bromosulfophthalein, and benzopyrene oxide. Thus, both substitution and addition reactions associated with vertebrate glutathione S-transferase were found in the crab transferases. There was no when ethacrynic acid, methyl iodide, trans-4-phenyl-3-buten-2-one, 1,2-epoxy-(p-nitrophenoxy)propane, cumene hydroperoxide, and t-butyl hydroperoxide were used as substrates. The lack of peroxidase activity is of interest since this activity is commonly found in vertebrate transferase isozymes. The two transferases had a dimeric Mr of 40,800 with similar amino acid compositions and similar kinetic parameters (Vmax, Km, and pH maxima) with 1-chloro-2,4-dinitrobenzene as substrate. The two transferases could be distinguished by their isoelectric points, molecular mass of the monomers (22,300 for GST 1 and 22,300 and 22,400 for GST 2), and different inhibitor mechanisms with hematin and bromosulfophthalein.  相似文献   

4.
Glutathione S-transferases containing Yb3 subunits are relatively uncommon forms that are expressed in a tissue-specific manner and have not been identified unequivocally or characterized. A cDNA clone containing the entire coding sequence of Yb3 glutathione S-transferase mRNA was incorporated into a pIN-III expression vector used to transform Escherichia coli. A fusion Yb3-protein containing 14 additional amino acid residues at its N terminus was purified to homogeneity. Recombinant Yb3 was enzymatically active with both 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates but lacked glutathione peroxidase activity. Substrate specificity patterns of recombinant Yb3 were more limited than those of glutathione S-transferase isoenzymes containing Yb1- or Yb2-type subunits. Peptides corresponding to unique amino acid sequences of Yb3 as well as a peptide from a region of homology with Yb1 and Yb2 subunits were synthesized. These synthetic peptides were used to raise antibodies specific to Yb3 and others that cross-reacted with all Yb forms. Immunoblotting was utilized to identify the natural counterpart of recombinant Yb3 among rat glutathione transferases. Brain and testis glutathione S-transferases were rich in Yb3 subunits, but very little was found in liver or kidney. Physical properties, substrate specificities, and binding patterns of the recombinant protein paralleled properties of the natural isoenzyme isolated from brain.  相似文献   

5.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

6.
Inhibition of purified glutathione S-transferases by indomethacin   总被引:1,自引:0,他引:1  
Soluble rat liver glutathione S-transferases have been purified and a previously undescribed peak was observed. This peak contained glutathione S-transferase activity which was extensively inhibited by indomethacin. Glutathione conjugation of 1-chloro-2,4-dinitrobenzene by this isozyme, designated glutathione S-transferase VII, was inhibited 44 and 68% at indomethacin concentrations of 0.20 and 1.00 microM, respectively. The other six basic glutathione S-transferase isozymes were relatively unaffected by low concentrations of indomethacin. The pharmacological significance of this inhibition by indomethacin is largely dependent on the role of the glutathione S-transferase VII in leukotriene synthesis.  相似文献   

7.
The human glutathione S-transferase cDNAs encoding subunits 1 and 2 contain intrinsic ribosome-binding sites in their 5'-untranslated regions for direct expression in Escherichia coli. We show that functional human GSH S-transferases 1-1 and 2-2 are synthesized from lambda gt11 cDNA clones lambda GTH1 and lambda GTH2 in phage lysates of E. coli Y1090, in lysogens of E. coli Y1089, and from the plasmid expression constructs in pKK223-3. The E. coli-expressed human GHS S-transferases 1-1 and 2-2 do not have blocked N termini in contrast to those directly purified from human livers. These two isozymes, with 11 amino acid substitutions between them, are similar in their Km values for GSH and 1-chloro-2,4-dinitrobenzene and Kcat values for this conjugation reaction. The human GSH S-transferase 2-2, however, is a more active GSH peroxidase than transferase 1-1 toward cumene hydroperoxide and t-butyl hydroperoxide. Our results indicate that different members of a GSH S-transferase gene family with limited amino acid substitutions have different with limited amino acid substitutions have different but overlapping substrate specificities. We propose that accumulation of single amino acid replacements may be an important mechanism for generating diversity in GSH S-transferases with various xenobiotic substrates. In situ chromosomal hybridization results show that the GSH transferase Ha genes are located in the region of 6p12.  相似文献   

8.
The glutathione S-transferases are a family of dimeric enzymes that catalyze the reaction between GSH and a variety of electrophiles. Two closely related isozymes, referred to as YaYa and YcYc, were purified from rat liver. A radiolabeled azido derivative of glutathione (S-(p-azidophenacyl)[3H]glutathione) was prepared and used to label covalently the active site of the above two glutathione S-transferases. The noncovalently bound affinity label was a competitive inhibitor of glutathione S-transferase YaYa toward both 1-chloro-2,4-dinitrobenzene and GSH. The covalently labeled enzymes no longer bound to a GSH-affinity column, and covalent labeling was reduced in the presence of GSH and S-(dinitrophenyl)glutathione. These results suggest that the affinity label was binding at the active site. The covalently labeled enzymes were digested with trypsin, and the labeled peptides were purified by HPLC and then sequenced. A single-labeled peptide was identified in the tryptic digest of the YaYa isozyme, whereas two labeled peptides were present in the tryptic digest of YcYc. The Ya peptide sequence was identical with the published deduced sequence of amino acids between residues 212 and 218 and the sequences of the two peptides purified from Yc were identical with the deduced sequence of amino acids between 91 and 110 and 206 and 218. Hence, the Ya peptide and the smaller peptide purified from Yc came from the same region of the Ya and Yc subunits. This common region and a second region of the Yc subunit appear to form a portion of the active site of these two forms of glutathione S-transferase.  相似文献   

9.
The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood.  相似文献   

10.
Two distinct cDNAs corresponding to GSTA1 and GSTA2 genes encoding glutathione S-transferases (GSTs) from the hepatopancreas of red sea bream, Pagrus major were cloned and sequenced. A comparison of the nucleotide sequences of GSTA1 and GSTA2 revealed 98% identity and their derived amino acid sequences had 96% similarity. Both genes could be classified as alpha-class GSTs on the basis of their amino acid sequence identity with other species. Genomic DNA cloning showed that both GSTA1 and GSTA2 genes consisted of six exons and five introns. In a comparison of genomic DNAs, the structures of GSTA1 and GSTA2 differed. In addition, Southern-blot analysis indicated that at least two kinds of alpha-class GSTs existed in the P. major genome. In order to biochemically characterize the recombinant enzymes (pmGSTA1-1 and pmGSTA2-2), both clones were highly expressed in Escherichia coli. The purified pmGSTA1-1 and pmGSTA2-2 exhibited glutathione conjugating activity toward 1-chloro-2,4-dinitrobenzene and glutathione peroxidase activity toward cumene hydroperoxide, while neither pmGSTs show detectable activity toward 1,2-dichloro-4-nitrobenzene, ethacrynic acid, 4-hydroxynonenal, or p-nitrobenzyl chloride. Despite their high level of amino acid sequence identity, the pmGSTs had quite different enzyme-kinetic parameters.  相似文献   

11.
An inducible, cytosolic glutathione S-transferase (GST) was purified from Streptomyces griseus. GST isoenzymes with pI values of 6.8 and 7.9 used standard GST substrates including 1-chloro-2,4-dinitrobenzene. GST had subunit and native M(r)s of 24 and 48, respectively, and the N-terminal sequence SMILXYWDIIRGLPAH.  相似文献   

12.
We have isolated a glutathione S-transferase Yb1 subunit cDNA from a lambda gt11 cDNA collection constructed from rat testis poly(A) RNA enriched for glutathione S-transferase mRNA activities. This Yb1 cDNA, designated pGTR201, is identical to our liver Yb1 cDNA clone pGTR200 except for a shorter 5'-untranslated sequence. Active glutathione S-transferase is expressed from this Yb1 cDNA driven by the tac promoter on the plasmid construct pGTR201-KK. The expressed glutathione S-transferase protein begins with the third codon (Met) of the cDNA, and is missing the N-terminal proline of rat liver glutathione S-transferase 3-3. Therefore, our Escherichia coli expressed glutathione S-transferase protein represents a variant form of glutathione S-transferase 3-3 (Yb1Yb1), designated GST 3-3(-1). The expressed Yb1 subunits are assembled into a dimer as purified from sonicated E. coli crude extracts. In the absence of dithiothreitol three active isomers can be resolved by ion-exchange chromatography. The pure protein has an extinction coefficient of 9.21 x 10(4) M-1 cm-1 at 280 nm or E0.1% 280 = 1.78 and a pI at 8.65. It has a substrate specificity pattern similar to that of the authentic glutathione S-transferase 3-3. The GST 3-3(-1) has a KM of 202 microM for reduced GSH and of 36 microM for 1-chloro-2,4-dinitrobenzene. The turnover number for this conjugation reaction is 57 s-1. Results of kinetic studies of this reaction with GST 3-3(-1) are consistent with a sequential substrate binding mechanism. We conclude that the first amino acid proline of glutathione S-transferase 3-3 is not essential for enzyme activities.  相似文献   

13.
An isoenzyme of glutathione S-transferase (adGST) was purified from liver intestine of the seashell (Asaphis dichotoma) by GST-Sepharose 4B affinity chromatography followed by reverse-phase HPLC. The enzyme has a pI value of 4.6 and is composed of two subunits each with a molecular weight of 23kDa. It exhibits different catalytic activities toward the substrates 1-chloro-2,4-dinitrobenzene, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, ethacrynic acid, and p-nitrophenyl acetate and, fascinatingly, shows high activity toward CDNB. The amino acid composition of adGST was determined and found to be very similar to the Sloane squid GSTs. N-terminal analysis of the first 15 residues of adGST revealed that it has 73% sequence identity with the pig roundworm GSTs. The adGST shows characteristics similar to those of class sigma GSTs, as was indicated by its substrate specificity, N-terminal amino acid sequence, and amino acid composition.  相似文献   

14.
Glutathione S-transferase activity (EC 2.5.1.18) was demonstrated in six species of earthworms of the family Lumbricidae: Eisenia foetida, Lumbricus terrestris, Lumbricus rebellus, Allolobophora longa, Allolobophora caliginosa and Allolobophora chlorotica. Considerable activity was obtained with 1-chlorl-2,4-dinitrobenzene and low activity with 3,4-dichloro-1-nitrobenzene, but no enzymic reaction was detectable with sulphobromophthalein 1,2-epoxy-3-(p-nitrophenoxy)propane of trans-4-phenylbut-3-en-2-one as substrates. Enzyme prepartations from L. rubellus and A. longa were the most active, whereas A. chlorotica gave the lowest activity. The ratio of the activities obtained with 1-chloro-2,4-dinitrobenzene and 3,4-cichloro-1-nitrobenzene was very different in the various species, but no phylogenetic pattern was evident. Isoelectric focusing gave rise to various activity peaks as measured with 1-chloro-2,4-dinitrobenzene as a substrate, and the activity profiles of the species examined appeared to follow a taxonomic pattern. The activity of Allolobophora had the highest peak in the alkaline region, whereas that of Lumbricus had the highest peak in the acid region. Eisenia showed a very complex activity profile, with the highest peak ne pH 7. As determined by an enzymic assay, all the species contained glutathione, on an average about 0.5 mumol/g wet wt. Conjugation with glutathione catalysed by glutathione S-transferases may consequently be an important detoxification mechanism in earthworms.  相似文献   

15.
Glutathione S-transferases in human prostate   总被引:4,自引:0,他引:4  
A number of human prostatic tissue biopsies have been analyzed for glutathione S-transferase activity, using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate. Samples from nine patients (age range 61-90) with benign prostatic hypertrophy who had received no prior chemotherapy had a mean glutathione S-transferase activity of 137 +/- 44 nmol/min per mg with a range of 97-237. A qualitative comparison of the glutathione S-transferase of normal prostate and benign prostatic hypertrophy samples was carried out. Approximately 260-fold purification was achieved using glutathione-Sepharose affinity chromatography, with glutathione S-transferase accounting for approximately 0.19-0.33% of the total protein. Substrate specificity determinations suggested similar, but not identical, glutathione S-transferase subunits in normal prostate and benign prostatic hypertrophy. One- and two-dimensional electrophoresis (isoelectric focusing and 12.5% SDS-polyacrylamide gel electrophoresis) identified at least seven stained polypeptides in the purified glutathione S-transferase preparations. These ranged in Mr from approximately 24,000 to 28,500 and in pI from near neutral to basic. Western blot analysis using polyclonal antibodies raised against rat liver glutathione S-transferase suggested crossreactivity with five of the human isoenzymes in both normal prostate and benign prostatic hypertrophy. One of the glutathione S-transferases, present in both normal prostate and benign prostatic hypertrophy, had an Mr of approx. 24,000 and a near-neutral pI and crossreacted immunologically with a polyclonal antibody raised against human placental glutathione S-transferase (Yf, subunit 7 or pi). These data suggest that four glutathione S-transferases are expressed in human prostate, with subunits from each of the major classes alpha, mu and pi. These are characterized as Ya, Yb, Yb' and Yf (analogous alternative nomenclature subunits 1, 3, 4 and 7).  相似文献   

16.
A hitherto unknown cytosolic glutathione S-transferase from rat liver was discovered and a method developed for its purification to apparent homogeneity. This enzyme had several properties that distinguished it from other glutathione S-transferases, and it was named glutathione S-transferase X. The purification procedure involved DEAE-cellulose chromatography, (NH4)2SO4 precipitation, affinity chromatography on Sepharose 4B to which glutathione was coupled and CM-cellulose chromatography, and allowed the isolation of glutathione S-transferases X, A, B and C in relatively large quantities suitable for the investigation of the toxicological role of these enzymes. Like glutathione S-transferase M, but unlike glutathione S-transferases AA, A, B, C, D and E, glutathione S-transferase X was retained on DEAE-cellulose. The end product, which was purified from rat liver 20 000 g supernatant about 50-fold, as determined with 1-chloro-2,4-dinitrobenzene as substrate and about 90-fold with the 1,2-dichloro-4-nitrobenzene as substrate, was judged to be homogeneous by several criteria, including sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, isoelectric focusing and immunoelectrophoresis. Results from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration indicated that transferase X was a dimer with Mr about 45 000 composed of subunits with Mr 23 500. The isoelectric point of glutathione S-transferase X was 6.9, which is different from those of most of the other glutathione S-transferases (AA, A, B and C). The amino acid composition of transferase X was similar to that of transferase C. Immunoelectrophoresis of glutathione S-transferases A, C and X and precipitation of various combinations of these antigens by antisera raised against glutathione S-transferase X or C revealed that the glutathione S-transferases A, C and X have different electrophoretic mobilities, and indicated that transferase X is immunologically similar to transferase C, less similar to transferase A and not cross-reactive to transferases B and E. In contrast with transferases B and AA, glutathione S-transferase X did not bind cholic acid, which, together with the determination of the Mr, shows that it does not possess subunits Ya or Yc. Glutathione S-transferase X did not catalyse the reaction of menaphthyl sulphate with glutathione, and was in this respect dissimilar to glutathione S-transferase M; however, it conjugated 1,2-dichloro-4-nitrobenzene very rapidly, in contrast with transferases AA, B, D and E, which were nearly inactive towards that substrate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. The major glutathione S-transferase (GST) from the common squid Loligo vulgaris has been purified and shown to be a homodimer of subunit molecular mass 24,000 and pI 6.8. 2. It has high activity towards 1-chloro-2,4-dinitrobenzene, p-nitrobenzyl chloride, 4-hydroxynon-2-enal and linoleic acid hydroperoxide, low activity with 1,2-dichloro-4-nitrobenzene and no activity with ethacrynic acid, trans-4-phenyl-3-buten-2-one and 1,2-epoxy-3-(p-nitrophenoxy)propane. 3. The L. vulgaris GST did not cross-react with any of the available polyclonal antibodies raised against mammalian GSTs. 4. Forty amino acids of its N-terminal sequence have been determined. 5. Its activities and primary structure are compared with related proteins from other species.  相似文献   

18.
An acidic form of glutathione S-transferase (GST) was purified from human fetal livers by means of affinity chromatography and chromatofocusing. The major peak of the acidic form of GST was focused between pH 4.8 and 4.9. Judging by SDS-PAGE, the purified acidic GST was apparently homogeneous; the subunit molecular weight was estimated to be 23,000. The acidic GST catalyzed the conjugations of glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (EA). The immunochemical properties of the purified acidic GST were indistinguishable from those of human placental GST-pi. The N-terminal amino acid sequence of the acidic GST was identical with that of GST-pi from human placenta. The level of expression of the acidic form of GST was clearly different between human adult and fetal livers as examined on the levels of mRNA and protein.  相似文献   

19.
The regulation of purified glutathione S-transferase from rat liver microsomes was studied by examining the effects of various sulfhydryl reagents on enzyme activity with 1-chloro-2,4-dinitrobenzene as the substrate. Diamide (4 mM), cystamine (5 mM), and N-ethylmaleimide (1 mM) increased the microsomal glutathione S-transferase activity by 3-, 2-, and 10-fold, respectively, in absence of glutathione; glutathione disulfide had no effect. In presence of glutathione, microsomal glutathione S-transferase activity was increased 10-fold by diamide (0.5 mM), but the activation of the transferase by N-ethylmaleimide or cystamine was only slightly affected by presence of glutathione. The activation of microsomal glutathione S-transferase by diamide or cystamine was reversed by the addition of dithiothreitol. Glutathione disulfide increased microsomal glutathione S-transferase activity only when membrane-bound enzyme was used. These results indicate that microsomal glutathione S-transferase activity may be regulated by reversible thiol/disulfide exchange and that mixed disulfide formation of the microsomal glutathione S-transferase with glutathione disulfide may be catalyzed enzymatically in vivo.  相似文献   

20.
We have purified two isoenzymes of glutathione S-transferase from bovine retina to apparent homogeneity through a combination of gel-filtration chromatography, affinity chromatography and isoelectric focusing. The more anionic (pI = 6.34) and less anionic (pI = 6.87) isoenzymes were comparable with respect to kinetic and structural parameters. The Km for both substrates, reduced glutathione and 1-chloro-2,4-dinitrobenzene, bilirubin inhibition of glutathione conjugation to 1-chloro-2,4-dinitrobenzene, 1-chloro-2,4-dinitrobenzene inactivation of enzyme activity and molecular weight were similar. However, pH optimum and energy of activation were found to differ considerably. Retina was found to have no selenium-dependent glutathione peroxidase activity. The total glutathione peroxidase activity fractionated with the transferases in the gel-filtration range of mol.wt. 49000 and expressed activity with only organic hydroperoxides as substrate. Only the more anionic isoenzyme expressed both transferase and peroxidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号