首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The landing response of tethered flying housefliesMusca domestica elicited by motion of periodic gratings is analysed. The field of view of the compound eyes of a fly can be subdivided into a region of binocular overlap and a monocular region. In the monocular region the landing response is elicited by motion from front to back and suppressed by motion from back to front. The sensitivity to front to back motion in monocular flies (one eye covered with black paint) has a maximum at an angle 60°–80° laterally from the direction of flight in the equatorial plane. The maximum of the landing response to front to back motion as a function of the contrast frequencyw/ is observed at around 8 Hz. In the region of binocular overlap of monocular flies the landing response can be elicited by back to front motion around the equatorial plane if a laterally positioned pattern is simulataneously moved from front to back. 40° above the equatorial plane in the binocular region the landing response in binocular flies is elicited by upward motion, 40° below the equatorial plane in the binocular region it is elicited by downward motion. The results are interpreted as an adaptation of the visual system of the fly to the perception of a flow field having its pole in the direction of flight.  相似文献   

2.
The landing response of tethered flying blowflies, Calliphora erythrocephala, was elicited by moving periodic gratings, and by stripes moving apart. The influence of binocular interactions on the landing response was investigated by comparing the responses of intact (“binocular”) animals to the response of flies which had one eye covered with black paint (“monocular” flies) effectively eliminating the input from this eye. Directions of motion eliciting a maximal response (preference direction) were determined in intact animals, and in “molecular” flies for different regions of the visual field. Preference directions determined in “monocular” flies follow the orientation of Z-axes (Fig. 4). Preference directions determined in intact animals and in “monocular” flies differ in the binocular eye region: in intact animals, the preference directions corresponds to vertical directions of motion; whereas the preference direction determined for the same area in “monocular” flies are inclined obliquely against the vertical plane. Sex-specific differences were found for the ventral binocular eye region in which the shift of preference directions is more pronounced in male than in female flies. The experimental data support the hypothesis that elementary movement detectors are aligned along the Z-axes of the eye, and that preference directions deviating from the orientation of elementary movement detectors are caused by binocular interactions.  相似文献   

3.
Random-dot stereograms were generated with a blank area placed in part of the right-hand image so making a patchwork of monocular and binocular areas. The perceived depth and shape of the monocular region, where depth was not explicitly marked, depended in part on the depth and surface orientation of adjacent binocular areas. Thus a monocular rectangle flanked by two binocular rectangles which were placed in different fronto-parallel planes was seen as a sloping surface spanning the depth between the binocular regions, and, under some conditions, the gradient of a sloping binocular plane extended into a neighbouring monocular area. Division of the monocular region into two by textural discontinuities or discontinuities of motion sometimes altered the shape of the extrapolated surface. Often, though, the shape was unchanged by such discontinuities implying that both two- and three-dimensional features are used to segment a scene into separate surfaces. Pictorial cues also contribute to the shape and apparent depth of the monocular surface. For instance, when subjects viewed a display consisting of portions of a cube of which two ends were shown stereoscopically and one side monocularly, the monocular side was seen in three dimensions filling the gap between the ends. When stereo cues were pitted against pictorial cues, sometimes pictorial cues and sometimes stereo cues dominated, and sometimes the surface contained sharp discontinuities enabling both to be accommodated.  相似文献   

4.
The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1.  相似文献   

5.
When the eyes view incompatible images, binocular rivalry usually results: image constituents in corresponding parts of the monocular visual fields are not perceived simultaneously. We asked naive undergraduates to view dichoptic, dioptic, and monoptic plaids. The dichoptic images evoked strong binocular rivalry when contrast was high, especially if the component gratings were set in motion. Nevertheless, the subjects' visual systems integrated the motion information across the two eyes, producing a unitary motion percept that did not reflect the image in either eye alone. By manipulating the relative spatial scale of the gratings, we affected how well the motion cohered: the results were remarkably similar between dichoptic and traditional dioptic plaids. By manipulating the relative speed of the gratings, we systematically affected the perceived direction of motion of the plaids; these results were also remarkably similar for dichoptic and dioptic plaids. Thus, the motion analysis of dichoptic and dioptic plaids is proceeding according to very similar rules, even though the dichoptic images are incompatible and evoke binocular rivalry.  相似文献   

6.
Receptive field position and orientation disparities are both properties of binocularly discharged striate neurons. Receptive field position desparities have been used as a key element in the neural theory for binocular depth discrimination. Since most striate cells in the cat are binocular, these position disparities require that cells immediately adjacent to one another in the cortex should show a random scatter in their monocular receptive field positions. Superimposed on the progressive topographical representation of the visual field on the striate cortex there is experimental evidence for a localized monocular receptive field position scatter. The suggestion is examined that the binocular position disparities are built up out of the two monocular position scatters. An examination of receptive field orientation disparities and their relation to the random variation in the monocular preferred orientations of immediately adjacent striate neurons also leads to the conclusion that binocular orientation disparities are a consequence of the two monocular scatters. As for receptive field position, the local scatter in preferred orientation is superimposed on a progressive representation of orientation over larger areas of the cortex. The representation in the striate cortex of visual field position and of stimulus orientation is examined in relation to the correlation between the disparities in receptive field position and preferred orientation. The role of orientation disparities in binocular vision is reviewed.  相似文献   

7.
It has been argued that visual perception and the visual control of action depend upon functionally distinct and anatomically separable brain systems. Electrophysiological evidence indicates that binocular vision may be particularly important for the visuomotor processing within the posterior parietal cortex, and neuropsychological and psychophysical studies confirm that binocular vision is crucial for the accurate planning and control of prehension movements. An unresolved issue concerns the consequences for visuomotor processing of removing binocular vision. By one account, monocular viewing leads to reliance upon pictorial visual cues to calibrate grasping and results in disruption to normal size-constancy mechanisms. This proposal is based on the finding that maximum grip apertures are reduced with monocular vision. By a second account, monocular viewing results in the loss of binocular visual cues and leads to strategic changes in visuomotor processing by way of altered safety margins. This proposal is based on the finding that maximum grip apertures are increased with monocular vision. We measured both grip aperture and grip force during prehension movements executed with binocular and monocular viewing. We demonstrate that each of the above accounts may be correct and can be observed within the same task. Specifically, we show that, while grip apertures increase with monocular vision, consistent with altered visuomotor safety margins, maximum grip force is nevertheless reduced, consistent with a misperception of object size. These results are related to differences in visual processing required for calibrating grip aperture and grip force during reaching.  相似文献   

8.
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one – to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans'' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons'' visual control of body motion during avoidance.  相似文献   

9.
Relative binocular disparity cannot tell us the absolute 3D shape of an object, nor the 3D trajectory of its motion, unless the visual system has independent access to how far away the object is at any moment. Indeed, as the viewing distance is changed, the same disparate retinal motions will correspond to very different real 3D trajectories. In this paper we were interested in whether binocular 3D motion detection is affected by viewing distance. A visual search task was used, in which the observer is asked to detect a target dot, moving in 3D, amidst 3D stationary distractor dots. We found that distance does not affect detection performance. Motion-in-depth is consistently harder to detect than the equivalent lateral motion, for all viewing distances. For a constant retinal motion with both lateral and motion-in-depth components, detection performance is constant despite variations in viewing distance that produce large changes in the direction of the 3D trajectory. We conclude that binocular 3D motion detection relies on retinal, not absolute, visual signals.  相似文献   

10.
Tracking facilitates 3-D motion estimation   总被引:1,自引:0,他引:1  
The recently emerging paradigm of Active Vision advocates studying visual problems in form of modules that are directly related to a visual task for observers that are active. Along these lines, we are arguing that in many cases when an object is moving in an unrestricted manner (translation and rotation) in the 3D world, we are just interested in the motion's translational components. For a monocular observer, using only the normal flow — the spatio-temporal derivatives of the image intensity function — we solve the problem of computing the direction of translation and the time to collision. We do not use optical flow since its computation is an ill-posed problem, and in the general case it is not the same as the motion field — the projection of 3D motion on the image plane. The basic idea of our motion parameter estimation strategy lies in the employment of fixation and tracking. Fixation simplifies much of the computation by placing the object at the center of the visual field, and the main advantage of tracking is the accumulation of information over time. We show how tracking is accomplished using normal flow measurements and use it for two different tasks in the solution process. First it serves as a tool to compensate for the lack of existence of an optical flow field and thus to estimate the translation parallel to the image plane; and second it gathers information about the motion component perpendicular to the image plane.  相似文献   

11.
Binocular cues and the control of prehension   总被引:3,自引:0,他引:3  
The present study was designed to assess the importance of binocular information (i.e. binocular disparity and angle of convergence) in the control of prehension. Previous studies which have addressed this question have typically used the same experimental manipulation: comparing prehensile movements executed either under binocular conditions to those executed when one eye was occluded (monocular). However this may not be the correct comparison as in addition to depriving the subject of binocular depth cues. it also deprives the subject of any visual information in one eye. Therefore we determined the prehensile performance when the subject viewed the target object and scene with either (i) two different views (binocular), (ii) two identical views (bi-ocular), or (iii) one view only (monocular). Overall, the qualitative and quantitative performance in the bi-ocular and monocular control conditions was very similar on all the main measures (and different from the performance in the binocular condition). We conclude that the deficits in performance observed found for 'monocular' reaches should be attributed to the lack of local depth information specified by the binocular cues. In addition we speculate that convergence angle and binocular disparity, although involved in both the pre-movement and movement-execution phases of the reach, the cues may be weighted differently in both phases of a prehension movement depending on the behavioural strategy involved.  相似文献   

12.
Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision.  相似文献   

13.
A dynamical neural network model of binocular stereopsis is proposed to solve the problem of segmentation which remains ambiguous even when the problem of binocular correspondence is solved. Being compatible with the recent neurophysiological findings (Engel et al. 1991), the model assumes that neural cells show oscillatory activities and that segmentation into a coherent depth surface is coded by synchronization of activities. Employing appropriate constraints for segmentation, the present model shows proper segmentation of depth surfaces and also solves segmentational ambiguity caused by a gap. It is newly shown that binocularly-unmatched monocular cells are discriminated in temporal segmentation of monocular cells caused by recurrent interactions between monocular and binocular cells. Integrative interactions with the other visual components through temporal segmentation are also discussed.  相似文献   

14.
Amblyopia is a visual disorder caused by an anomalous early visual experience. It has been suggested that suppression of the visual input from the weaker eye might be a primary underlying mechanism of the amblyopic syndrome. However, it is still an unresolved question to what extent neural responses to the visual information coming from the amblyopic eye are suppressed during binocular viewing. To address this question we measured event-related potentials (ERP) to foveal face stimuli in amblyopic patients, both in monocular and binocular viewing conditions. The results revealed no difference in the amplitude and latency of early components of the ERP responses between the binocular and fellow eye stimulation. On the other hand, early ERP components were reduced and delayed in the case of monocular stimulation of the amblyopic eye as compared to the fellow eye stimulation or to binocular viewing. The magnitude of the amblyopic effect measured on the ERP amplitudes was comparable to that found on the fMRI responses in the fusiform face area using the same face stimuli and task conditions. Our findings showing that the amblyopic effects present on the early ERP components in the case of monocular stimulation are not manifested in the ERP responses during binocular viewing suggest that input from the amblyopic eye is completely suppressed already at the earliest stages of visual cortical processing when stimuli are viewed by both eyes.  相似文献   

15.
The present study employs a stereoscopic manipulation to present sentences in three dimensions to subjects as they read for comprehension. Subjects read sentences with (a) no depth cues, (b) a monocular depth cue that implied the sentence loomed out of the screen (i.e., increasing retinal size), (c) congruent monocular and binocular (retinal disparity) depth cues (i.e., both implied the sentence loomed out of the screen) and (d) incongruent monocular and binocular depth cues (i.e., the monocular cue implied the sentence loomed out of the screen and the binocular cue implied it receded behind the screen). Reading efficiency was mostly unaffected, suggesting that reading in three dimensions is similar to reading in two dimensions. Importantly, fixation disparity was driven by retinal disparity; fixations were significantly more crossed as readers progressed through the sentence in the congruent condition and significantly more uncrossed in the incongruent condition. We conclude that disparity depth cues are used on-line to drive binocular coordination during reading.  相似文献   

16.
 Recent experimental data indicate that both neurotrophic factors (NTFs) and intracortical inhibitory circuitry are implicated in the development and plasticity of ocular dominance columns. We extend a neurotrophic model of developmental synaptic plasticity, which previously failed to account correctly for the differences between monocular deprivation and binocular deprivation, and show that the inclusion of lateral cortical inhibition is indeed necessary in understanding the effects of visual deprivation in the model. In particular, we argue that monocular deprivation causes a differential shift in the balance between inhibition and excitation in cortical columns, down-regulating NTFs in deprived-eye columns and up-regulating NTFs in undeprived-eye columns; during binocular deprivation, however, no such shift occurs. We thus postulate that the response to visual deprivation is at the level of the cortical circuit, while the mechanisms of afferent segregation are at the molecular or cellular level. Such a dissociation is supported by recent experimental work challenging the assumption that columnar organisation develops in an activity-dependent, competitive fashion. Our extended model also questions recent attempts to distinguish between heterosynaptic and homosynaptic models of synaptic plasticity. Received: 17 April 2001 / Accepted in revised form: 7 November 2001  相似文献   

17.
Stimuli with small binocular disparities are seen as single, despite their differing visual directions for the two eyes. Such stimuli also yield stereopsis, but stereopsis and single vision can be dissociated. The occurrence of binocular single vision depends not only on the disparities of individual stimulus elements, but also on the geometrical relation of different parts of the pattern presented to each eye. A pair of vertical bars with opposite binocular disparities is seen as single if the pair is moderately widely spaced but not if it is narrow. Vertical alignment and identity in length of such bars also increase the occurrence of double vision. It is argued that these effects reflect the extraction of features of the monocular patterns, with these detected monocular features determining the binocular percept. Single and double vision of bars differing in orientation can be similarly analysed. The occurrence of relatively elaborate processing of monocular signals does not exclude the possibility that binocular interaction can occur between signals that have not been so processed. Multiple sites or types of binocular interaction are likely.  相似文献   

18.
Huang CB  Zhou J  Zhou Y  Lu ZL 《PloS one》2010,5(12):e15075

Background

How the visual system combines information from the two eyes to form a unitary binocular representation of the external world is a fundamental question in vision science that has been the focus of many psychophysical and physiological investigations. Ding & Sperling (2006) measured perceived phase of the cyclopean image, and developed a binocular combination model in which each eye exerts gain control on the other eye''s signal and over the other eye''s gain control. Critically, the relative phase of the monocular sine-waves plays a central role.

Methodology/Principal Findings

We used the Ding-Sperling paradigm but measured both the perceived contrast and phase of cyclopean images in three hundred and eighty combinations of base contrast, interocular contrast ratio, eye origin of the probe, and interocular phase difference. We found that the perceived contrast of the cyclopean image was independent of the relative phase of the two monocular gratings, although the perceived phase depended on the relative phase and contrast ratio of the monocular images. We developed a new multi-pathway contrast-gain control model (MCM) that elaborates the Ding-Sperling binocular combination model in two ways: (1) phase and contrast of the cyclopean images are computed in separate pathways, although with shared cross-eye contrast-gain control; and (2) phase-independent local energy from the two monocular images are used in binocular contrast combination. With three free parameters, the model yielded an excellent account of data from all the experimental conditions.

Conclusions/Significance

Binocular phase combination depends on the relative phase and contrast ratio of the monocular images but binocular contrast combination is phase-invariant. Our findings suggest the involvement of at least two separate pathways in binocular combination.  相似文献   

19.
20.
Tian J  Wang C  Sun F 《Spatial Vision》2003,16(5):407-418
When gratings moving in different directions are presented separately to the two eyes, we typically perceive periods of the combination of motion in the two eyes as well as periods of one or the other monocular motions. To investigate whether such interocular motion combination is determined by the intersection-of-constraints (IOC) or vector average mechanism, we recorded both optokinetic nystagmus eye movements (OKN) and perception during dichoptic presentation of moving gratings and random-dot patterns with various differences of interocular motion direction. For moving gratings, OKN alternately tracks not only the direction of the two monocular motions but also the direction of their combined motion. The OKN in the combined motion direction is highly correlated with the perceived direction of combined motion; its velocity complies with the IOC rule rather than the vector average of the dichoptic motion stimuli. For moving random-dot patterns, both OKN and perceived motion alternate only between the directions of the two monocular motions. These results suggest that interocular motion combination in dichoptic gratings is determined by the IOC and depends on their form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号