首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that the liver undergoes size increase and differentiation simultaneously during the postnatal period. Cells in the liver undergo a period of well-controlled proliferation to achieve the adult liver-to-body weight ratio. The postnatal liver growth is also accompanied by simultaneous hepatic differentiation. However, the mechanisms of liver size regulation and differentiation are not completely clear. Herein we report that yes-associated protein (Yap), the downstream effector of the Hippo Kinase signaling pathway, plays a role in liver size regulation and differentiation during the postnatal liver growth period. Postnatal liver growth was studied in C57BL/6 mice over a time course of postnatal days (PND) 0-30. Analysis of nuclear Yap by Western blot indicated peak Yap activation between PND15-20, which coincided with increased cyclin D1 expression and liver cell proliferation. Analysis of postnatal liver development in Yap(+/-) mice revealed a significant decrease in the liver-to-body weight ratio compared with Yap(+/+) mice at PND15 and -30. Yap(+/-) mice exhibited a significant decrease in postnatal liver cell proliferation, but no change in apoptosis was observed. Furthermore, global gene expression analysis of Yap(+/-) livers revealed a role of Yap in regulation of genes involved in bile acid metabolism, retinoic acid metabolism, ion transport, and extracellular matrix proteins. Taken together, these data indicate that Yap plays a role in both cell proliferation and possibly in hepatic differentiation during postnatal liver development.  相似文献   

2.
3.
Liver injury and repair were examined in wild type, p21Waf1/Cip1, and p27Kip1-deficient mice following carbon tetrachloride (CCl4) administration. In wild type liver, p21 expression is induced in a biphasic manner following injection of CCl4, with an early peak of p21 expression occurring in pericentral hepatocytes at 6 h, prior to evidence of injury, and a second peak succeeding regenerative proliferation. In contrast, p27 is present throughout the quiescent liver, but its expression decreases following CCl4 injection. Surprisingly, p21-deficient animals were resistant to CCl4-induced necrotic injury, indicating that rapid induction of p21 in pericentral hepatocytes following CCl4 injection contributes to subsequent necrosis. Expression of cytochrome P450 2E1, which plays an essential role in CCl4-induced necrotic injury, was not affected in p21-deficient mice. Although they had the least injury, p21-deficient mice had the highest levels of hepatic proliferation that correlated with increases in hyperphosphorylated retinoblastoma protein and Cyclin A gene expression. Increased replication in p21-deficient livers was counteracted by an increase in hepatocyte apoptosis as detected by caspase-3 activation. p21 plays distinct and opposing roles regulating hepatocyte survival during injury and subsequent repair, with early induction of p21 contributing to necrotic injury and later expression to cessation of proliferation and hepatocyte survival.  相似文献   

4.
Studies using lower organisms and cultured mammalian cells have revealed that the COP9 signalosome (CSN) has important roles in multiple cellular processes. Conditional gene targeting was recently used to study CSN function in murine T-cell development and activation. Using the Cre-loxP system, here we have achieved postnatal hepatocyte-restricted knockout of the csn8 gene (HR-Csn8KO) in mice. The protein abundance of other seven CSN subunits was differentially downregulated by HR-Csn8KO and the deneddylation of all cullins examined was significantly impaired. Moreover, HR-Csn8KO-induced massive hepatocyte apoptosis and evoked extensive reparative responses in the liver, including marked intralobular proliferation of biliary lineage cells and trans-differentiation and proliferation of the oval cells. However, division of pre-existing hepatocytes was significantly diminished in HR-Csn8KO livers. These findings indicate that Csn8 is essential to the ability of mature hepatocytes to proliferate effectively in response to hepatic injury. The histopathological examinations revealed striking hepatocytomegaly in Csn8-deficient livers. The hepatocyte nuclei were dramatically enlarged and pleomorphic with hyperchromasia and prominent nucleoli, consistent with dysplasia or preneoplastic cellular alteration in HR-Csn8KO mice at 6 weeks. Pericellular and perisinusoid fibrosis with distorted architecture was also evident at 6 weeks. It is concluded that CSN8/CSN is essential to postnatal hepatocyte survival and effective proliferation.  相似文献   

5.
6.
A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.  相似文献   

7.
The fibroblast growth factor (FGF) receptor complex is a regulator of adult organ homeostasis in addition to its central role in embryonic development and wound healing. FGF receptor 4 (FGFR4) is the sole FGFR receptor kinase that is significantly expressed in mature hepatocytes. Previously, we showed that mice lacking mouse FGFR4 (mR4(-/-)) exhibited elevated fecal bile acids, bile acid pool size, and expression of liver cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for canonical neutral bile acid synthesis. To prove that hepatocyte FGFR4 was a negative regulator of cholesterol metabolism and bile acid synthesis independent of background, we generated transgenic mice overexpressing a constitutively active human FGFR4 (CahR4) in hepatocytes and crossed them with the FGFR4-deficient mice to generate CahR4/mR4(-/-) mice. In mice expressing active FGFR4 in liver, fecal bile acid excretion was 64%, bile acid pool size was 47%, and Cyp7a1 expression was 10-30% of wild-type mice. The repressed level of Cyp7a1 expression was resistant to induction by a high cholesterol diet relative to wild-type mice. Expression of CahR4 in mR4(-/-) mouse livers depressed bile acid synthesis below wild-type levels from the elevated levels observed in mR4(-/-). Levels of phosphorylated c-Jun N-terminal kinase (JNK), which is part of a pathway implicated in bile acid-mediated repression of synthesis, was 30% of wild-type levels in mR4(-/-) livers, whereas CahR4 livers exhibited an average 2-fold increase. However, cholate still strongly induced phospho-JNK in mR4(-/-) livers. These results confirm that hepatocyte FGFR4 regulates bile acid synthesis by repression of Cyp7a1 expression. Hepatocyte FGFR4 may contribute to the repression of bile acid synthesis through JNK signaling but is not required for activation of JNK signaling by bile acids.  相似文献   

8.
9.
10.
Processes of polyploidization in the liver parenchyma were investigated in the course of postnatal organism growth, stabilization of growth and ageing, using cytophotometry on the slides of isolated hepatocytes from normal livers of 140 donors aged from 1 day to 92 years. In addition, livers of human embryos (4, 5, 6 and 7 month old) were investigated. It is concluded that polyploid cells in the human liver appear in individuals aged from 1 to 5 years. However, during the postnatal development their relative number increases insignificantly. At the end of the intensive postnatal growth period the share of polyploid human liver cells is less than 3%. Binuclear cells with diploid nuclei are seen as early as in the embryonic liver. After birth their number increases slowly to reach 7.1% in the 16-20 year age group. The postnatal growth of human liver is due mainly to mitotic divisions of mononuclear diploid hepatocytes whose relative number is more than 90% during the postnatal growth. During the period of maturity (from 21 to 50 years), when the liver practically stops to grow, the levels of hepatocyte ploidy are changed insignificantly: part of 2c-hepatocytes decreases slowly (up to 84.8% by the end of period) and (2c x 2)-hepatocyte number increases slowly too. The number of polyploid cells increases by several times, but is equal only to 6.6% of all the hepatocytes counted. Under ageing, on the background of human liver atrophy, acceleration of hepatocyte polyploidization takes place. In the age group of 86-92 years parts of 2c- and (2c x 2)-hepatocytes reach 60.3 and 14.3%, resp., and the total share of polyploid cells is as much as near 25%, calculated from the cell population of liver parenchyma. The maximum ploidy levels in hepatocytes of normal human liver during ageing is becoming 16c and 8c x 2 for mononuclear and binuclear cells, resp. Transition rates among hepatocytes of different ploidy classes (2c--2c, 2c--2c x 2, 2c x 2--4c, 2c--4c) were calculated in addition to the coefficient of changing of the hepatocyte proliferative activity with the increase in its ploidy and cell death rate in different periods of human life. A rather high hepatocyte proliferative activity in the early postnatal period of human life was seen to lower during the following years of life. In maturity it is the lowermost to make less than 5% of that in newborns. During ageing the hepatocyte DNA-synthesizing activity being almost 1.6-1.7 times as much as in maturity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
13.
Mice deficient in fatty acyl-CoA oxidase (AOX(-/-)), the first enzyme of the peroxisomal beta-oxidation system, develop specific morphological and molecular changes in the liver characterized by microvesicular fatty change, increased mitosis, spontaneous peroxisome proliferation, increased mRNA and protein levels of genes regulated by peroxisome proliferator-activated receptor alpha (PPARalpha), and hepatocellular carcinoma. Based on these findings it is proposed that substrates for AOX function as ligands for PPARalpha. In this study we examined the sequential changes in morphology and gene expression in the liver of wild-type and AOX(-/-) mice at Embryonic Day 17.5, and during postnatal development up to 2 months of age. In AOX(-/-) mice high levels of expression of PPARalpha-responsive genes in the liver commenced on the day of birth and persisted throughout the postnatal period. We found no indication of PPARalpha activation in the livers of AOX(-/-) mice at embryonic age E17.5. In AOX(-/-) mice microvesicular fatty change in liver cells was evident at 7 days. At 2 months of age livers showed extensive steatosis and the presence in the periportal areas of clusters of hepatocytes with abundant granular eosinophilic cytoplasm rich in peroxisomes. These results suggest that the biological ligands for PPARalpha vis a vis substrates for AOX either are not functional in fetal liver or do not cross the placental barrier during the fetal development and that postnatally they are likely derived from milk and diet.  相似文献   

14.
15.
Although the complement system has been implicated in liver regeneration after toxic injury and partial hepatectomy, the mechanism or mechanisms through which it participates in these processes remains ill-defined. In this study, we demonstrate that complement activation products (C3a, C3b/iC3b) are generated in the serum of experimental mice after CCl(4) injection and that complement activation is required for normal liver regeneration. Decomplementation by cobra venom factor resulted in impaired entry of hepatocytes into S phase of the cell cycle. In addition, livers from C3-deficient (C3(-/-)) mice showed similarly impaired proliferation of hepatocytes, along with delayed kinetics of both hepatocyte hyperplasia and removal of injured liver parenchyma. Restoration of hepatocyte proliferative capabilities of C3(-/-) mice through C3a reconstitution, as well as the impaired regeneration of C3a receptor-deficient mice, demonstrated that C3a promotes liver cell proliferation via the C3a receptor. These findings, together with data showing two waves of complement activation, indicate that C3 activation is a pivotal mechanism for liver regeneration after CCl(4) injury, which fulfills multiple roles; C3a generated early after toxin injection is relevant during the priming of hepatocytes, whereas C3 activation at later times after CCl(4) treatment contributes to the clearance of injured tissue.  相似文献   

16.
17.
18.
19.
Changes in isolated hepatocyte dry mass, its ploidy and liver mass at different stages of the rat postnatal ontogeny were investigated. The determination of these processes and special calculation made it possible to estimate quantitatively a relative contribution of cell proliferation, polyploidization and hypertrophy, not associated with DNA synthesis to the increase in the liver mass at different stages of the rat development. During the first week after the rat's birth, its liver growth is provided by 61 and 39% with hepatocyte proliferation and hypertrophy, respectively. Between the 14th and the 21st days of development, when considerable functional changes occur in the rat liver, the contributions of proliferative and polyploidization processes, and of cell hypertrophy into the liver mass increasing are roughly identical. Later on, the contribution of cell hypertrophy into the liver growth is noticeably reducing to reach within 1-2 months only 1%. On this developmental stage the liver mass increment by 2/3 is provided due to cell proliferation and by 1/3--to its polyploidization. As a whole, the accelerated growth of the rat liver from the birth to sex puberty is described as follows: the contribution of processes of proliferation and polyploidization, and of cell hypertrophy correspond to 28, 30 and 42%, respectively; afterwards, the liver growth being retarded. Within the period from 2 to 6 months, the liver mass increase is provided mainly (up to 76%) by cell proliferation, the shares of polyploidization and cell hypertrophy being 8 and 16%, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号