首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antipova O  Orgel JP 《PloS one》2012,7(3):e32241
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory and destructive joint disorder that affects tens of millions of people worldwide. Normal healthy joints maintain a balance between the synthesis of extracellular matrix (ECM) molecules and the proteolytic degradation of damaged ones. In the case of RA, this balance is shifted toward matrix destruction due to increased production of cleavage enzymes and the presence of (autoimmune) immunoglobulins resulting from an inflammation induced immune response. Herein we demonstrate that a polyclonal antibody against the proteoglycan biglycan (BG) causes tissue destruction that may be analogous to that of RA affected tissues. The effect of the antibody is more potent than harsh chemical and/or enzymatic treatments designed to mimic arthritis-like fibril de-polymerization. In RA cases, the immune response to inflammation causes synovial fibroblasts, monocytes and macrophages to produce cytokines and secrete matrix remodeling enzymes, whereas B cells are stimulated to produce immunoglobulins. The specific antigen that causes the RA immune response has not yet been identified, although possible candidates have been proposed, including collagen types I and II, and proteoglycans (PG's) such as biglycan. We speculate that the initiation of RA associated tissue destruction in vivo may involve a similar non-enzymatic decomposition of collagen fibrils via the immunoglobulins themselves that we observe here ex vivo.  相似文献   

2.
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.  相似文献   

3.
Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will high-light the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.  相似文献   

4.
Mechanisms whereby T lymphocytes contribute to synovial inflammation in rheumatoid arthritis are poorly understood. Here we review data that indicate an important role for cell contact between synovial T cells, adjacent macrophages and fibroblast-like synoviocytes (FLS). Thus, T cells activated by cytokines, endothelial transmigration, extracellular matrix or by auto-antigens can promote cytokine, particularly TNF alpha, metalloproteinase production by macrophages and FLS through cell-membrane interactions, mediated at least through beta-integrins and membrane cytokines. Since soluble factors thus induced may in turn contribute directly to T cell activation, positive feedback loops are likely to be created. These novel pathways represent exciting potential therapeutic targets.  相似文献   

5.
Macrophages are known to play a key role during inflammation in rheumatoid arthritis (RA). Inflammatory macrophages have increased expression of CD64, the high-affinity receptor for IgG. Targeting this receptor through a CD64-directed immunotoxin, composed of an Ab against CD64 and Ricin A, results in effective killing of inflammatory macrophages. In this study, we show elevated levels of CD64 on synovial macrophages in both synovial lining and synovial fluid in RA patients. The CD64-directed immunotoxin efficiently eliminates activated synovial macrophages in vitro, while leaving quiescent, low CD64-expressing macrophages unaffected. To examine whether killing of CD64 macrophages results in therapeutic effects in vivo, we established an adjuvant arthritis (AA) model in newly generated human CD64 (hCD64) transgenic rats. We demonstrate that hCD64 regulation in this transgenic rat model is similar as in humans. After AA induction, treatment with CD64-directed immunotoxin results in significant inhibition of disease activity. There is a direct correlation between immunotoxin treatment and decreased macrophage numbers, followed by diminished inflammation and bone erosion in paws of these hCD64 transgenic rats. These data support synovial macrophages to play a crucial role in joint inflammation in AA in rats and in human RA. Selective elimination of inflammatory macrophages through a CD64-directed immunotoxin may provide a novel approach for treatment of RA.  相似文献   

6.
Mechanisms whereby T lymphocytes contribute to synovial inflammation in rheumatoid arthritis are poorly understood. Here we review data that indicate an important role for cell contact between synovial T cells, adjacent macrophages and fibroblast-like synoviocytes (FLS). Thus, T cells activated by cytokines, endothelial transmigration, extracellular matrix or by auto-antigens can promote cytokine, particularly TNFα, metalloproteinase production by macrophages and FLS through cell-membrane interactions, mediated at least through β-integrins and membrane cytokines. Since soluble factors thus induced may in turn contribute directly to T cell activation, positive feedback loops are likely to be created. These novel pathways represent exciting potential therapeutic targets.  相似文献   

7.
gp130 is a common receptor chain for cytokines such as interleukin (IL)-27 and IL-6. During experimental tuberculosis (TB), IL-27 prevents optimal antimycobacterial protection and limits the pathological sequelae of chronic inflammation. The anti-inflammatory properties of IL-27 have been attributed mainly to its suppressive effect on T helper (TH) cells. However, because gp130 cytokines also suppress the inflammatory immune response of macrophages, IL-27 may also regulate inflammation by limiting the secretion of pro-inflammatory cytokines. To specifically address the role of gp130 cytokines on macrophages, the outcome of experimental TB was analysed in macrophage/neutrophil-specific gp130-deficient (LysM(cre) gp130(loxP/loxP)) mice. In these mice, the enhanced induction of inflammatory cytokines and increased expression of the inducible nitric oxide synthase (NOS2) and LRG47 was linked to a greatly augmented TH17 immune response and matrix metalloproteinase (MMP)-9 expression. However, this amplified inflammatory immune response in Mtb-infected LysM(cre) gp130(loxP/loxP) mice was not associated with reduced bacterial loads and/or accelerated pathology. Our study revealed an immunoregulatory function of gp130 cytokines on macrophages/granulocytes, which is, however, not critical for modulating the outcome of TB.  相似文献   

8.

Introduction

Osteoarthritis (OA) is a degenerative disease characterized by cartilage breakdown in the synovial joints. The presence of low-grade inflammation in OA joints is receiving increasing attention, with synovitis shown to be present even in the early stages of the disease. How the synovial inflammation arises is unclear, but proteins in the synovial fluid of affected joints could conceivably contribute. We therefore surveyed the proteins present in OA synovial fluid and assessed their immunostimulatory properties.

Methods

We used mass spectrometry to survey the proteins present in the synovial fluid of patients with knee OA. We used a multiplex bead-based immunoassay to measure levels of inflammatory cytokines in serum and synovial fluid from patients with knee OA and from patients with rheumatoid arthritis (RA), as well as in sera from healthy individuals. Significant differences in cytokine levels between groups were determined by significance analysis of microarrays, and relations were determined by unsupervised hierarchic clustering. To assess the immunostimulatory properties of a subset of the identified proteins, we tested the proteins' ability to induce the production of inflammatory cytokines by macrophages. For proteins found to be stimulatory, the macrophage stimulation assays were repeated by using Toll-like receptor 4 (TLR4)-deficient macrophages.

Results

We identified 108 proteins in OA synovial fluid, including plasma proteins, serine protease inhibitors, proteins indicative of cartilage turnover, and proteins involved in inflammation and immunity. Multiplex cytokine analysis revealed that levels of several inflammatory cytokines were significantly higher in OA sera than in normal sera, and levels of inflammatory cytokines in synovial fluid and serum were, as expected, higher in RA samples than in OA samples. As much as 36% of the proteins identified in OA synovial fluid were plasma proteins. Testing a subset of these plasma proteins in macrophage stimulation assays, we found that Gc-globulin, α1-microglobulin, and α2-macroglobulin can signal via TLR4 to induce macrophage production of inflammatory cytokines implicated in OA.

Conclusions

Our findings suggest that plasma proteins present in OA synovial fluid, whether through exudation from plasma or production by synovial tissues, could contribute to low-grade inflammation in OA by functioning as so-called damage-associated molecular patterns in the synovial joint.  相似文献   

9.
In rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll‐like receptor (TLR)‐mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol‐requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer. Myeloid‐specific deletion of the IRE1α gene protected mice from inflammatory arthritis, and treatment with the IRE1α‐specific inhibitor 4U8C attenuated joint inflammation in mice. IRE1α was required for optimal production of pro‐inflammatory cytokines as evidenced by impaired TLR‐induced cytokine production in IRE1α‐null macrophages and neutrophils. Further analyses demonstrated that tumour necrosis factor (TNF) receptor‐associated factor 6 (TRAF6) plays a key role in TLR‐mediated IRE1α activation by catalysing IRE1α ubiquitination and blocking the recruitment of protein phosphatase 2A (PP2A), a phosphatase that inhibits IRE1α phosphorylation. In summary, we discovered a novel regulatory axis through TRAF6‐mediated IRE1α ubiquitination in regulating TLR‐induced IRE1α activation in pro‐inflammatory cytokine production, and demonstrated that IRE1α is a potential therapeutic target for inflammatory arthritis.  相似文献   

10.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

11.
Macrophages maintain a dynamic balance in physiology. Various known or unknown microenvironmental signals influence the polarization, activation and death of macrophages, which creates an imbalance that leads to disease. Rheumatoid arthritis (RA) is characterized by the massive infiltration of a variety of chronic inflammatory cells in synovia. Abundant activated macrophages found in RA synovia are an early hallmark of RA, and the number of these macrophages can be decreased after effective treatment. In RA, the proportion of M1 (pro‐inflammatory macrophages) is higher than that of M2 (anti‐inflammatory macrophages). The increased pro‐inflammatory ability of macrophages is related to their excessive activation and proliferation as well as an enhanced anti‐apoptosis ability. At present, there are no clinical therapies specific to macrophages in RA. Understanding the mechanisms and functional consequences of the heterogeneity of macrophages will aid in confirming their potential role in inflammation development. This review will outline RA‐related macrophage properties (focus on polarization, metabolism and apoptosis) as well as the origin of macrophages. The molecular mechanisms that drive macrophage properties also be elucidated to identify novel therapeutic targets for RA and other autoimmune disease.  相似文献   

12.
Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel ability to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of Treg and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.  相似文献   

13.
14.
15.
The balance between pro- and anti-inflammatory cytokines plays an important role in determining the severity of inflammation in rheumatoid arthritis (RA). Antagonism between opposing cytokines at the level of signal transduction plays an important role in many other systems. We have begun to explore the possible contribution of signal transduction cross-talk to cytokine balance in RA by examining the effects of IL-1, a proinflammatory cytokine, on the signaling and action of IL-6, a pleiotropic cytokine that has both pro- and anti-inflammatory actions, in RA synovial fibroblasts. Pretreatment with IL-1 suppressed Janus kinase-STAT signaling by IL-6, modified patterns of gene activation, and blocked IL-6 induction of tissue inhibitor of metalloproteases 1 expression. These results suggest that proinflammatory cytokines may contribute to pathogenesis by modulating or blocking signal transduction by pleiotropic or anti-inflammatory cytokines. The mechanism of inhibition did not require de novo gene activation and did not depend upon tyrosine phosphatase activity, but, instead, was dependent on the p38 stress kinase. These results identify a molecular basis for IL-1 and IL-6 cross-talk in RA synoviocytes and suggest that, in addition to levels of cytokine expression, modulation of signal transduction also plays a role in regulating cytokine balance in RA.  相似文献   

16.
Our objective was to investigate sympathetic and sensory nerve fibers in synovial tissue in rheumatoid arthritis (RA) and osteoarthritis (OA) in relation to histological inflammation and synovial cytokine and norepinephrine (NE) secretion. Immunohistochemistry was used to detect nerve fibers and inflammatory parameters. A superfusion technique of synovial tissue pieces was used to investigate cytokine and NE secretion. In RA, we detected 0.2 +/- 0.04 tyrosine hydroxylase-positive (TH-positive=sympathetic) nerve fibers/mm2 as compared to 4.4 +/- 0. 8 nerve fibers/mm2 in OA (P<0.001). In RA, there was a negative correlation between the number of TH-positive nerve fibers and inflammation index (RRank=-0.705, P=0.002) and synovial IL-6 secretion (RRank=-0.630, P=0.009), which was not found in OA. Substance P-positive (=sensory) nerve fibers were increased in RA as compared to OA (3.5+/-0.2 vs. 2.3+/-0.3/mm2, P=0.009). Despite lower numbers of sympathetic nerve fibers in RA than in OA, NE release was similar at baseline (RA vs. OA: 152+/-36 vs. 106+/-21 pg/ml, n.s.). Basal synovial NE secretions correlate with the number of TH-positive CD 163+ synovial macrophages (RA: RRank=0.622, P=0.031; OA: RRank=0.299, n.s.), and synovial macrophages have been shown to produce NE in vitro. Whereas sympathetic innervation is reduced, sensory innervation is increased in the synovium from patients with longstanding RA when compared to the synovium from OA patients. The differential patterns of innervation are dependent on the severity of the inflammation. However, NE secretion from the synovial tissue is maintained by synovial macrophages. This demonstrates a loss of the influence of the sympathetic nervous system on the inflammation, accompanied by an up-regulation of the sensory inputs into the joint, which may contribute to the maintenance of the disease.  相似文献   

17.
肥胖与慢性炎症   总被引:1,自引:0,他引:1  
孙波  李辉  王宁 《生物学杂志》2012,29(2):88-90
肥胖及其相关的代谢类疾病严重影响人类的健康,而肥胖诱导的慢性炎症是胰岛素抵抗和代谢综合症发病的关键因素.脂肪组织慢性炎症发生的机制及其与代谢综合症的关系已经成为全球瞩目的研究热点.慢性炎症的特征主要包括脂肪组织中促炎细胞因子表达量增加,抗炎细胞因子表达量降低以及大量巨噬细胞浸润.鉴于肥胖及其相关代谢综合症对人类健康的巨大危害,现对慢性炎症的发生机制,肥胖和慢性炎症之间的关系,脂肪组织炎症中巨噬细胞浸润以及和信号传导通路进行综述.  相似文献   

18.
Macrophages secrete inflammatory cytokines and mono-nitrogen oxide (NO), and play crucial roles in inflammation in early-stage rheumatoid arthritis (RA). This study investigated whether glucosamine hydrochloride (GlcN), a nonsteroidal anti-inflammatory agent (NSAID) widely used to treat arthritis, affects the expression of inflammatory cytokines via the unfolded protein response (UPR) in lipopolysaccharide (LPS)-stimulated mouse macrophages (RAW264.7 cells). Pretreatment with GlcN reduced the expression of inflammatory cytokines and inhibited cell differentiation. Moreover, GlcN treatment increased the expression of CHOP and BiP/Grp78, the UPR target genes, in the presence or absence of LPS. Indeed, knockdown of CHOP using siRNAs prevented the GlcN-mediated reduction of inflammatory cytokines in LPS-stimulated RAW264.7 cells. Finally, we found that GlcN-mediated induction of CHOP reduced the phosphorylation of JNK and NF-?B in LPS-stimulated RAW264.7 cells. Combined, these results suggest that the GlcN-mediated induction of CHOP negatively regulates the inflammatory response by modulating JNK and NF-?B in LPS-stimulated RAW264.7 cells.  相似文献   

19.
Rheumatoid arthritis (RA) is a prototypical autoimmune disorder mainly characterized by joint inflammation and cartilage destruction. Neutrophils actively take part in the initiation and progression of RA. Neutrophils express inflammatory mediators, including cytokines and chemokines. Aberrant formation of neutrophil extracellular traps (NETs) has been demonstrated in the pathogenesis of RA. Thus, neutrophils are regarded as important therapeutic targets in RA treatment. Quercetin is one of the major flavonoids found in fruits and vegetables. Previous studies have demonstrated that quercetin is a potential agent for the treatment of RA. However, the underlying antiarthritic mechanism of quercetin has not been investigated clearly. In this study, we analyzed the therapeutic mechanism of quercetin for RA. Our results showed that quercetin ameliorates inflammation in RA mice by inhibiting neutrophil activities. Quercetin inhibited neutrophil infiltration and reduced the plasma levels of inflammatory cytokines. Quercetin promoted the apoptosis of activated neutrophils. In addition, quercetin inhibited NET formation by suppressing autophagy. These findings suggest that quercetin may be an alternative agent for the treatment of RA by inhibiting neutrophil activities.  相似文献   

20.
Objective:To explore the role and mechanism of chondrogenic bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on Rheumatoid arthritis (RA).Methods:The chondrogenesis of BMSCs was induced by chondrogenic medium. Exosomes from BMSCs and chondrogenic BMSCs were isolated and characterized by transmission electron microscope (TEM), laser particle size analyzer and western blot. ELISA was used to analyze the expression levels of pro-inflammatory cytokines and matrix metalloproteinases (MMPs). Western bolt was performed to assess MAPK and NF-κB pathways expression. The inflammation score and the pathological damage of RA mice were evaluated. Luciferase reporter assay and RIP were carried out to examine the relationship between microRNA-205-5p (miR-205-5p) and mouse double minute 2 (MDM2).Results:Chondrogenic BMSCs-derived exosomes suppressed pro-inflammatory cytokines, MMPs and MAPK and NF-κB pathways in RA-FLSs. miR-205-5p had a high expression in chondrogenic BMSCs-derived exosomes. Functionally, exosomal miR-205-5p also played the anti-inflammation effects. Besides, MDM2 was a direct target of miR-205-5p. Additionally, chondrogenic BMSCs-secreted exosomal miR-205-5p suppressed the inflammation score, joint destruction, and inflammatory response in collagen-induced arthritis (CIA) mice through MDM2.Conclusion:Chondrogenic BMSCs-derived exosomal miR-205-5p suppressed inflammatory response, MAPK and NF-κB pathways through MDM2 in RA, indicating exosomal miR-205-5p might be a potential target for RA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号