首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon-like peptide-2 (GLP-2) action is dependent on intestinal expression of IGF-I, and IGF-I action is modulated by IGF binding proteins (IGFBP). Our objective was to evaluate whether the intestinal response to GLP-2 or IGF-I is dependent on expression of IGFBP-3 and -5. Male, adult mice in six treatment groups, three wild-type (WT) and three double IGFBP-3/-5 knockout (KO), received twice daily intraperitoneal injections of GLP-2 (0.5 μg/g body wt), IGF-I (4 μg/g body wt), or PBS (vehicle) for 7 days. IGFBP-3/-5 KO mice showed a phenotype of lower plasma IGF-I concentration, but greater body weight and relative mass of visceral organs, compared with WT mice (P < 0.001). WT mice showed jejunal growth with either IGF-I or GLP-2 treatment. In KO mice, IGF-I did not stimulate jejunal growth, crypt mitosis, sucrase activity, and IGF-I receptor (IGF-IR) expression, suggesting that the intestinotrophic actions of IGF-I are dependent on expression of IGFBP-3 and -5. In KO mice, GLP-2 induced significant increases in jejunal mucosal cellularity, crypt mitosis, villus height, and crypt depth that was associated with increased expression of the ErbB ligand epiregulin and decreased expression of IGF-I and IGF-IR. This suggests that in KO mice, GLP-2 action in jejunal mucosa is independent of the IGF-I system and linked with ErbB ligands. In summary, the intestinotrophic actions of IGF-I, but not GLP-2, in mucosa are dependent on IGFBP-3 and -5. These findings support the role of multiple downstream mediators for the mucosal growth induced by GLP-2.  相似文献   

2.
Schwann cells (SCs) are the myelin producing cells of the peripheral nervous system. During development, SCs cease proliferation and differentiate into either a myelin-forming or non-myelin forming mature phenotype. We are interested in the role of insulin-like growth factor-I (IGF-I) in SC development. We have shown previously SCs proliferate in response to IGF-I in vitro. In the current study, we investigated the role of IGF-I in SC differentiation. SC differentiation was determined by morphological criteria and expression of myelin proteins. Addition of 1 mM 8-bromo cyclic AMP (cAMP) or growth on Matrigel matrix decreased proliferation and induced differentiation of SCs. IGF-I enhanced both cAMP and Matrigel matrix-induced SC differentiation, as assessed by both morphological criteria and myelin gene expression. Cultured SCs also express IGF binding protein-5 (IGFBP-5), which can modulate the actions of IGF-I. We examined the expression of IGFBP-5 during SC differentiation. Both cAMP and Matrigel matrix treatment enhanced IGFBP-5 protein expression and cAMP increased IGFBP-5 gene expression five fold. These findings suggest IGF-I potentiates SC differentiation. The concomitant up-regulation of IGFBP-5 may play a role in targeting IGF-I to SCs and thus increase local IGF-I bioavailability. J. Cell. Physiol. 171:161–167, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Insulin-like growth factor binding proteins (IGFBPs) have been shown to serve as carrier proteins for the insulin-like growth factors (IGFs) and to modulate their biologic effects. Since extracellular matrix (ECM) has been shown to be a reservoir for IGF-I and IGF-II, we examined the ECM of cultured human fetal fibroblasts and found that IGFBP-5 was incorporated intact into ECM, while mostly inert proteolytic fragments were found in the medium. In contrast, two other forms of IGFBP that are secreted by these cells were either present in ECM in minimal amounts (IGFBP-3) or not detected (IGFBP-4). Likewise, when purified IGFBPs were incubated with ECM, IGFBP-5 bound preferentially. IGFBP-5 was found to bind to types III and IV collagen, laminin, and fibronectin. Increasing salt concentrations inhibited the binding of IGFBP-5 to ECM and accelerated the release of IGFBP-5 from ECM, suggesting an ionic basis for this interaction. ECM-associated IGFBP-5 had a sevenfold decrease in affinity for IGF-I compared to IGFBP-5 in solution. Furthermore, when IGFBP-5 was present in cell culture substrata, it potentiated the growth stimulatory effects of IGF- I on fibroblasts. When IGFBP-5 was present only in the medium, it was degraded to a 22-kD fragment and had no effect on IGF-I-stimulated growth. We conclude that IGFBP-5 is present in fibroblast ECM, where it is protected from degradation and can potentiate the biologic actions of IGF-I. These findings provide a molecular explanation for the association of the IGF's with the extracellular matrix, and suggest that the binding of the IGF's to matrix, via IGFBP-5, may be important in mediating the cellular growth response to these growth factors.  相似文献   

4.
Binding proteins for the insulin-like growth factors (IGF-BPs) are important modulators of the biological actions of IGF-I and IGF-II. The generation of IGFBPs within developing organs, and their spatial arrangement, may similarly determine IGF action at specific microanatomical sites. In situ hybridization studies with late gestation (days 16, 18 and 20) fetal rat lung using a cDNA probe for IGFBP-2 showed strong gene expression in the fetal lung epithelial structures (alveoli and airways). The sites of IGFBP-2 gene expression were associated with immunoreactive IGF-II at the apical surface of the epithelium. By day 20, there was also some IGFBP-2 gene expression and immunoreactive IGF-II at discrete sites in the mesenchyme. In contrast, immunoreactive IGF-I was found predominantly distributed in a punctate pattern, consistent with its presence in the lumen or walls of small vessels or capillaries, and in a granular, intracellular form in both epithelial and mesenchymal cells. These studies suggest that endogenously generated IGFBP-2 may determine the distribution of IGF-II, principally at the apical surface of lung epithelia. IGF-I does not colocalise with IGF-II peptide or the sites of IGFBP-2 gene expression. We conclude that the spatial distributions of these two related growth factors are separately controlled, to some extent by endogenously generated binding proteins.  相似文献   

5.
We have demonstrated previously in Hs578T cells that insulin-like growth factor binding protein (IGFBP)-3 can significantly accentuate ceramide (C2)-induced apoptosis, but has no effect on cell death induced by integrin detachment [using an arginine-glycine-aspartic acid (RGD)-containing peptide]. In contrast we found that IGFBP-5 could inhibit apoptosis induced by either C2 or integrin detachment. It is now clear that the mitochondria not only provide the energy required for cell viability, but can also play an important role during the commitment phase to apoptosis. We used a mitochondrial respiratory chain inhibitor, antimycin A, at both apoptotic and nonapoptotic doses to further investigate the IGF-independent actions of IGFBP-3 and IGFBP-5 on C2 and RGD-induced apoptosis in the Hs578T cells. Hs578T cells had one of three treatments. 1: They were incubated with increasing doses of antimycin A for 24 h. 2: They were coincubated with an apoptotic dose of either C2 or RGD together with a nonapoptotic dose of antimycin A for 24 h. 3: They were incubated with a binding protein (100 ng/ml) for 24 h followed by coincubation of the binding protein with an apoptotic dose of antimycin A for a further 24 h. Cell viability was assessed by trypan blue dye exclusion and MTT assay, and apoptosis was confirmed and measured by morphologic assessment and flow cytometry. We found that antimycin A initiated apoptosis at 10 micromol/L and above. We also demonstrated that a nonapoptotic dose of antimycin A (0.1 micromol/L) significantly inhibited C2-induced apoptosis, whereas it significantly accentuated RGD-induced cell death. In addition, we found that cell death induced by antimycin A can be accentuated by IGFBP-3 but is not affected by IGFBP-5. These data indicate that IGFBP-3 can directly enhance apoptosis triggered via the mitochondria; either directly by a mitochondrial inhibitor or by C2 (which we demonstrate to act via effects on the mitochondria in this model). IGFBP-5, however, appears to confer survival effects via a distinct pathway not involving the mitochondria.  相似文献   

6.
7.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

8.
The ovarian insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system operates to permit maximal stimulation of steroidogenesis in the dominant follicle. In atretic follicles, the predominant IGFBPs are IGFBP-2 and IGFBP-4, which appear to be selectively cleaved in healthy follicles. We have recently demonstrated potent inhibition by IGFBP-4 of both theca and granulosa cell steroid production. The degree to which the inhibition occurred suggested that it was greater than might be expected by sequestration of IGF alone. Our study was designed to test this idea. Granulosa cells were harvested from follicles dissected intact from patients undergoing total abdominal hysterectomy and bilateral salpingoophorectomy. Granulosa cells were incubated with or without gonadotropins and IGFBP-4 in the presence or absence of either the IGF type I receptor blocker alphaIR3 or excess IGFBP-3 to remove the effects of endogenous IGF action. Steroid accumulation in the medium was assessed. IGFBP-4 continued to exert potent inhibitory effects when the action of endogenous IGF was removed from the system, demonstrating that its actions are independent of IGF binding. There was no effect on cell metabolism, and the effects on steroidogenesis were reversible after IGFBP-4 removal from the culture medium. No similar effects were seen with IGFBP-2. These reasults are the first evidence of IGF-independent IGFBP-4 actions and the first evidence of IGF-independent actions of any IGFBPs in the ovary.  相似文献   

9.
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) either inhibit or enhance IGF-stimulated cellular effects. While inhibition occurs by sequestration of IGF from cell-surface receptors, the exact mechanism of IGF-enhancement remains undefined. Human osteoblast-like bone cells in culture secrete several IGF-binding proteins, one of which we have previously identified as IGFBP-5. In this study we purified a 23-kDa IGFBP-5 from cultures of human osteoblast-like cells using ligand affinity chromatography and reversed-phase high performance liquid chromatography and tested its bioactivity in serum-free cultures of normal mouse osteoblast-like cells. Binding studies with radioiodinated IGF showed similar and relatively low affinities for IGF-I and IGF-II consistent with a carboxyl truncated IGF-binding protein. Mitogenic assays demonstrated that the binding protein, when coincubated with IGF-I or -II, enhanced mitogenesis. This enhancement was unique from other binding proteins in not requiring a preincubation period or serum co-factors. Furthermore, the osteoblast-derived IGFBP-5 stimulated mitogenesis in the absence of exogenous or endogenous IGF. Using radioiodinated IGFBP-5 we found that the binding protein could associate with the osteoblast surface, an effect which did not require IGF nor an interaction with IGF receptors. We suggest that osteoblast-derived IGFBP-5 may stimulate osteoblast mitogenesis in at least two ways, by association with IGF and by a second pathway that is independent of IGF receptor activation.  相似文献   

10.
IGF-I is mitogenic for the bovine mammary epithelial cell line MAC-T. In addition, IGF-I specifically upregulates IGFBP-3 synthesis in these cells. To investigate this effect on cell growth and IGF-I responsiveness, cell lines were developed that constitutively express IGFBP-3. MAC-T cells transfected with IGFBP-3 (+BP3) or vector alone (Mock) grew similarly over 7 days in 10 or 1% fetal calf serum. Basal DNA synthesis was lower (70%) in +BP3 cells compared to Mock cells. However, DNA synthesis was increased by IGF-I (1-50 ng/ml) relative to untreated controls to a greater extent in +BP3 cells compared to Mock cells. IGF-I (20 ng/ml) increased DNA synthesis 11- and threefold in +BP3 and Mock cells, respectively. Additionally, +BP3 cells were more sensitive to the lower concentrations of IGF-I (1-5 ng/ml). In contrast, preincubation of Mock cells with exogenous IGFBP-3 did not enhance responsiveness or sensitivity to IGF-I. Basal DNA synthesis was unaffected by either an IGF neutralizing antibody or exogenous IGFBP3, indicating the differences observed between +BP3 and Mock cells were not attributable to sequestration of endogenous IGF-I by IGFBP-3. There were no differences between +BP3 and Mock cells in IGF-I receptor number or affinity. DNA synthesis was also increased in +BP3 cells, compared to controls, in response to 5 microg/ml insulin and 2.5 ng/ml Long R(3)IGF-I, indicating that the potentiated response did not require an interaction with IGFBP-3. These results suggest that IGF-I regulation of IGFBP-3 represents a regulatory loop, the function of which is to increase IGF-I bioactivity, using a mechanism that does require an IGF-I-IGFBP-3 interaction.  相似文献   

11.
We have previously reported that two highly conserved amino acids in the C-terminal domain of rat insulin-like growth factor-binding protein (IGFBP)-5, Gly(203) and Gln(209), are involved in binding to insulin-like growth factor (IGF)-1. Here we report that mutagenesis of both amino acids simultaneously (C-Term mutant) results in a cumulative effect and an even greater reduction in IGF-I binding: 30-fold measured by solution phase IGF binding assay and 10-fold by biosensor analysis. We compared these reductions in ligand binding to the effects of specific mutations of five amino acids in the N-terminal domain (N-Term mutant), which had previously been shown by others to cause a very large reduction in IGF-I binding (). Our results confirm this as the major IGF-binding site. To prove that the mutations in either N- or C-Term were specific for IGF-I binding, we carried out CD spectroscopy and showed that these alterations did not lead to gross conformational changes in protein structure for either mutant. Combining these mutations in both domains (N+C-Term mutant) has a cumulative effect and leads to a 126-fold reduction in IGF-I binding as measured by biosensor. Furthermore, the equivalent mutations in the C terminus of rat IGFBP-2 (C-Term 2) also results in a significant reduction in IGF-I binding, suggesting that the highly conserved Gly and Gln residues have a conserved IGF-I binding function in all six IGFBPs. Finally, although these residues lie within a major heparin-binding site in IGFBP-5 and -3, we also show that the mutations in C-Term have no effect on heparin binding.  相似文献   

12.
IGFBP-3 has both stimulatory and inhibitory effects on cancer progression. The growth of EO771 mammary carcinoma cells as syngeneic tumors in C57BL/6 mice is reduced in Igfbp3-null (BP3KO) mice, suggesting that systemic IGFBP-3 enhances tumor progression. In this study we assessed the growth of EO771 cells expressing human IGFBP-3 in BP3KO mice. Cells expressing hIGFBP-3 showed decreased proliferation in vitro and increased levels of IGF-1 receptor (IGF1R) protein but not mRNA, consistent with sequestration of endogenous IGF by IGFBP-3. The growth rate of these cells was restored by exposure to IGF-1 or analogues with reduced affinity for IGFBP-3 (long Arg3-IGF-1) or IGF1R (Leu24-IGF-1). In EO771 cells implanted orthotopically into mice, hIGFBP-3 expression by the cells inhibited tumor establishment in BP3KO but not wild-type mice. For tumors that successfully established, final weight was not affected significantly by hIGFBP-3 expression. However, final tumor weight was inversely related to intratumoral T cell counts, and sera from BP3KO mice with tumors showed low-titer immunoreactivity against IGFBP-3. The contrasting effects on tumor establishment and progression of IGFBP-3 expressed by mammary carcinoma cells, compared to systemic stromal and circulating IGFBP-3, highlights the complexity of growth regulation by IGFBP-3 in mammary tumors.  相似文献   

13.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

14.
It is hypothesized that autosomal retroposons compensate for the loss of their inactivated essential X-chromosome progenitors during spermatogenesis. Here we test this Retroposon Compensatory Mechanism (RCM) hypothesis using the Zfy gene family. The mouse autosomal retroposon Zfa is expressed in testes at the same developmental time points at which Zfx levels decline, which correspond to the time of male sex chromosome inactivation, suggesting that Zfa may compensate for the loss of Zfx during spermatogenesis. We examined the effect of Zfa-targeted mutagenesis on spermatogenesis in three genetically distinct mouse strains. Surprisingly, Zfa knockout mice showed no detectable fertility, sperm count, or testes morphology defects. We therefore conclude that Zfa is not an essential gene for spermatogenesis and fertility. This surprising finding now challenges the RCM hypothesis at least for the Zfy gene family. It also forces us to reevaluate the original data underpinning the RCM hypothesis for this family and to propose alternative hypotheses.  相似文献   

15.
Structural analogs of recombinant human insulin-like growth factor-I (IGF-I), with alterations to each of the B, C, A, and D domains, have been tested for their ability to form binary complexes with IGF-binding protein-3 (IGFBP-3) and ternary complexes with IGFBP-3 and the acid-labile subunit (alpha-subunit). Two functionally distinct regions of IGF-I have been identified. The first, involving residues 3 and 4 and the alpha-helix between residues 8 and 18 of the B-domain, as well as residues 49-51 in the A-domain, appears important for IGFBP-3 binding, such that substitution of these residues results in decreased binary complex available for alpha-subunit binding. The second region, distal to the IGFBP-3-binding epitope and primarily involving the D-domain and B-domain near residue 24, with some involvement of the C-domain, appears slightly inhibitory to binary complex formation, such that analogs with a truncated D-domain or with a Gly4 bridge substituted for the C-domain show enhanced binding to IGFBP-3. However, binary complexes formed from these analogs bind the alpha-subunit with reduced affinity, the effect being most marked when substitution of the C-domain, or replacement of Tyr24, is superimposed on D-domain truncation. It is concluded that although the alpha-subunit does not itself bind IGF-I, its interaction with IGFBP-3 in the ternary complex is dependent on structural determinants on IGF-I distal to the IGFBP-3 binding domain.  相似文献   

16.
17.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

18.
Binding proteins for insulin-like growth factors (IGFs) IGF-I and IGF-II, known as IGFBPs, control the distribution, function and activity of IGFs in various cell tissues and body fluids. Insulin-like growth factor-binding protein-5 (IGFBP-5) is known to modulate the stimulatory effects of IGFs and is the major IGF-binding protein in bone tissue. We have expressed two N-terminal fragments of IGFBP-5 in Escherichia coli; the first encodes the N-terminal domain of the protein (residues 1-104) and the second, mini-IGFBP-5, comprises residues Ala40 to Ile92. We show that the entire IGFBP-5 protein contains only one high-affinity binding site for IGFs, located in mini-IGFBP-5. The solution structure of mini-IGFBP-5, determined by nuclear magnetic resonance spectroscopy, discloses a rigid, globular structure that consists of a centrally located three-stranded anti-parallel beta-sheet. Its scaffold is stabilized further by two inside packed disulfide bridges. The binding to IGFs, which is in the nanomolar range, involves conserved Leu and Val residues localized in a hydrophobic patch on the surface of the IGFBP-5 protein. Remarkably, the IGF-I receptor binding assays of IGFBP-5 showed that IGFBP-5 inhibits the binding of IGFs to the IGF-I receptor, resulting in reduction of receptor stimulation and autophosphorylation. Compared with the full-length IGFBP-5, the smaller N-terminal fragments were less efficient inhibitors of the IGF-I receptor binding of IGFs.  相似文献   

19.
One of the forms of the insulin-like growth factor (IGF) binding proteins present in human amniotic fluid has been shown to potentiate the growth-promoting effect of IGF-I markedly. This study was undertaken to determine the cellular and hormonal factors that modulate this potentiation and to determine whether this protein would potentiate the effects of other mitogens. Although the combination of the IGFBP-1 (20 ng/ml) and IGF-I (10 ng/ml) induced a five- to sixfold increase in DNA synthesis compared with IGF-I alone, this response required the simultaneous addition of IGF-I with 0.1% platelet-poor plasma (PPP). If PPP was omitted from the incubation medium, no increase above the effect that was obtained with IGF-I alone was noted. Substitution of cerebrospinal fluid (CSF) for PPP permitted a full mitogenic response, although substitution with amniotic fluid resulted in no enhancement. The factor contained in PPP was heat and acid stable. If the binding protein was co-incubated with fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), or epidermal growth factor (EGF), a slight inhibition of the cellular response to each of these factors was detected. Co-incubation of IGF-I with the IGF-binding protein plus these other peptide growth factors resulted in no further enhancement of DNA synthesis above the level observed with IGF-I and the binding protein alone. Likewise, addition of plasma proteins such as transferrin or albumin did not result in a further enhancement of the DNA synthesis response to IGF-I plus binding protein, and these proteins could not substitute for PPP or IGFBP-1. Transient exposure of the cultures (2 hr) to the binding protein plus IGF-I resulted in a submaximal DNA synthesis response, and the binding protein had to be present continuously to achieve a maximal effect. These studies indicate that a factor contained in plasma and CSF is required for a maximal cellular response to IGFBP-1 plus IGF-I, and this factor does not appear to be a well-defined mitogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号