首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial attachment of influenza virus to cells is the binding of hemagglutinin (HA) to the sialyloligosaccharide receptor; therefore, the small molecules that inhibit the sugar–protein interaction are promising as HA inhibitors to prevent the infection. We herein demonstrate that sialic acid-mimic heptapeptides are identified through a selection from a primary library against influenza virus HA. In order to obtain lead peptides, an affinity selection from a phage-displayed random heptapeptide library was performed with the HAs of the H1 and H3 strains, and two kinds of the HA-binding peptides were identified. The binding of the peptides to HAs was inhibited in the presence of sialic acid, and plaque assays indicated that the corresponding N-stearoyl peptide strongly inhibited infections by the A/Aichi/2/68 (H3N2) strain of the virus. Alanine scanning of the peptides indicated that arginine and proline were responsible for binding. The affinities of several mutant peptides with single-amino-acid substitutions against H3 HA were determined, and corresponding docking studies were performed. A Spearman analysis revealed a correlation between the affinity of the peptides and the docking study. These results provide a practicable method to design of peptide-based HA inhibitors that are promising as anti-influenza drugs.  相似文献   

2.
目的:建立用糖基工程酵母制备流感血凝素的方法 ,研究其免疫原性,为酵母表达流感疫苗提供基础。方法:通过PCR的方法扩增编码H1N1流感病毒血凝素HA1(1~330 aa)的基因片段,将HA1基因克隆到表达载体pPIC9质粒上,电转化到糖基工程酵母中,甲醇诱导表达并用镍亲和层析柱纯化重组蛋白,N-糖苷酶F(PNGF)酶切分析N-糖链,Western印迹验证纯化蛋白,免疫小鼠并测定HA1诱导抗体的滴度。结果:获得HA1基因的酵母重组表达菌株,SDS-PAGE分析可见野生型GS115表达的重组HA1相对分子质量约为100×103,而糖基工程酵母GJK01表达的HA1约为60×103,PNGF酶切后相对分子质量均降至45×103左右;经Western印迹检测,这些条带均为目的蛋白条带,野生型和糖基工程酵母表达的HA1分子大小不同是由于不同的N-糖基化修饰引起的。重组HA1免疫小鼠可产生抗HA1抗体,随着抗原剂量的增加,其产生的抗体滴度相应增加;3次免疫后,4μg HA1诱导小鼠产生的抗体滴度最高。结论:利用糖基工程酵母表达制备了低糖化的流感病毒血凝素HA1,该重组蛋白可以诱导小鼠产生HA1抗体,且产生的抗体滴度具有HA1剂量依赖性。  相似文献   

3.
We have recently described a novel hemagglutinin (HA) conformational change inhibitor of human influenza virus, Stachyflin (Yoshimoto et al, Arch. Virol., 144, 1-14, 1999). Stachyflin-resistant variants of human influenza A/WSN/33 (H1N1) virus were isolated in vitro and the nucleotide sequences of their HA genes were determined. The relation of amino acid substitutions and Stachyflin resistance was analyzed with in vitro membrane fusion between HA-expressing cells and octadecylrhodamine (R18)-labelled chick erythrocytes (RBC). The amino acid substitutions, lysine to arginine at position 51 or lysine to glutamic acid at position 121 of the HA2 subunit of the HA protein was enough to confer a Stachyflin-resistant phenotype of HA protein. The molecular mechanism of anti-HA conformational change activity of Stachyflin is discussed.  相似文献   

4.
Two peptides corresponding to HA1(181-204) and HA2(103-123) of the A/Japan/305/57 influenza virus hemagglutinin (HA) were chemically synthesized by solid-phase methods and were tested for their ability to generate murine secondary anti-influenza cytolytic T lymphocytes (CTL) in vitro and to bind monoclonal anti-HA antibodies. Peptide HA1(181-204) could only generate CTL in the presence of helper factors contained in supernatant fluids from either Concanavalin A-stimulated mouse spleen cultures or WEHI-3 cells grown in vitro. Peptide HA2(103-123) stimulated the induction of anti-influenza CTL independent of helper factors, but the stimulation was also greatly increased if helper factors were added. A 10-fold molar excess of peptide HA2(103-123) was required to obtain optimal CTL activation over the quantities required in the HA1(181-204) system. This molar ratio remained unchanged, even in the presence of helper factors. Induction of influenza-specific CTL was antigen-dependent in both systems, even though some killing of noninfected target cells was also occasionally observed. Our results suggest that synthetic peptides can be recognized as antigenic determinants in the generation of H-2-restricted anti-viral CTL capable of killing appropriately infected target cells. The inability of peptide HA1(181-204) to generate sufficient help for CTL development suggests that certain regions of the HA can be recognized by CTL precursors, but not by all of the required helper cells. Peptide HA1(181-204) also reacted with three monoclonal anti-HA antibodies as well as mouse anti-influenza (A/Japan/305/57) immune sera. This antibody reactivity suggests the possibility of a shared antigenic epitope or region between T and B cells, and therefore provides new insight in our understanding of viral antigenicity.  相似文献   

5.
The hemagglutinin protein (HA) of the influenza virus family is a major antigen for protective immunity. Thus, it is a relevant target for developing vaccines. Here, we describe a human CD4(+) T cell epitope in the influenza virus HA that lies in the fusion peptide of the HA. This epitope is well conserved in all 16 subtypes of the HA protein of influenza A virus and the HA protein of influenza B virus. By stimulating peripheral blood mononuclear cells (PBMCs) from a healthy adult donor with peptides covering the entire HA protein based on the sequence of A/Japan/305/1957 (H2N2), we generated a T cell line specific to this epitope. This CD4(+) T cell line recognizes target cells infected with influenza A virus seasonal H1N1 and H3N2 strains, a reassortant H2N1 strain, the 2009 pandemic H1N1 strain, and influenza B virus in cytotoxicity assays and intracellular-cytokine-staining assays. It also lysed target cells infected with avian H5N1 virus. We screened healthy adult PBMCs for T cell responses specific to this epitope and found individuals who had ex vivo gamma interferon (IFN-γ) responses to the peptide epitope in enzyme-linked immunospot (ELISPOT) assays. Almost all donors who responded to the epitope had the HLA-DRB1*09 allele, a relatively common HLA allele. Although natural infection or standard vaccination may not induce strong T and B cell responses to this highly conserved epitope in the fusion peptide, it may be possible to develop a vaccination strategy to induce these CD4(+) T cells, which are cross-reactive to both influenza A and B viruses.  相似文献   

6.
Since the advent of highly pathogenic variants of avian influenza virus (HPAIV), the main focus of avian influenza research has been the characterization and detection of HPAIV hemagglutinin (HA) from H5 and H7 subtypes. However, due to the high mutation and reassortation rate of influenza viruses, in theory any influenza strain may acquire increased pathogenicity irrespective of its subtype. A comprehensive antigenic characterization of influenza viruses encompassing all 16 HA and 9 neuraminidase subtypes will provide information useful for the design of differential diagnostic tools, and possibly, vaccines. We have expressed recombinant HA proteins from 3 different influenza virus HA subtypes in the baculovirus system. These proteins were used to generate polyclonal rabbit antisera, which were subsequently employed in epitope scanning analysis using peptide libraries spanning the entire HA. Here, we report the identification and characterization of linear, HA subtype-specific as well as inter subtype-conserved epitopes along the HA proteins. Selected subtype-specific epitopes were shown to be suitable for the differentiation of anti-HA antibodies in an ELISA.  相似文献   

7.

Background

During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection.

Methods and Findings

To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject.

Conclusion

The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.  相似文献   

8.
The specificity and function of two T-cell clones derived from A/Memphis/1/71 (H3) influenza virus (Mem 71)-immune BALB/c spleen cells have been compared. One clone, X-31 clone 1, was subtype specific, proliferating in response to influenza strains of the H3 subtype only. The other, Jap clone 3, cross-reacted in proliferation assays with heterologous subtypes of influenza A, but not type B. Both clones recognized the HA1 chain of the hemagglutinin (HA) molecule and their proliferation in response to detergent-disrupted virus could be specifically inhibited by monoclonal antibodies to the HA. The T-cell clones were of the L3T4+ phenotype. Both recognized antigen in association with I-Ed, as indicated by studies with H-2 recombinant strains of mice and by blocking with monoclonal anti-I-E antibody. In vivo, both clones elicited a delayed-type hypersensitivity (DTH) reaction when inoculated into mouse footpads together with virus, X-31 clone 1 again displaying subtype specificity and Jap clone 3 being cross-reactive. The clones were also able to provide factor-mediated help in vitro to virus-primed B cells in an anti-HA antibody response. The cross-reactive T-cell clone provided help not only for B cells primed with influenza A subtype H3 and responding to H3 virus in culture, but also for H2 virus-primed B cells making anti-H2 antibody.  相似文献   

9.
Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.  相似文献   

10.
Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS) in the hemagglutinin protein (HA). Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.  相似文献   

11.
Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.  相似文献   

12.
To define the recognition site of cytotoxic T lymphocytes (CTLs) on influenza virus H5 hemagglutinin (HA), an H5 HA-specific CTL clone was examined for the ability to recognize monoclonal antibody-selected HA variants of influenza virus A/Turkey/Ontario/7732/66 (H5N9). On the basis of 51Cr release assays with the variants, a CTL epitope was located near residue 168 of H5 HA. To define the epitope more precisely, a series of overlapping peptides corresponding to this region was synthesized and tested for CTL recognition. The minimum peptide recognized by the CTL clone encompassed residues 158 to 169 of H5 HA. Relative to the H3 HA three-dimensional structure, this CTL epitope is located near the distal tip of the HA molecule, also known as a major B-cell epitope on H3 HA. A single mutation at residue 168 (Lys to Glu) in the H5 HA variants abolished CTL recognition; this same amino acid was shown previously to be critical for B-cell recognition (M. Philpott, C. Hioe, M. Sheerar, and V. S. Hinshaw, J. Virol. 64:2941-2947, 1990). Additionally, mutations within this region of the HA molecule were associated with attenuation of the highly virulent A/Turkey/Ontario/7732/66 (H5N9) (M. Philpott, B. C. Easterday, and V.S. Hinshaw, J. Virol. 63:3453-3458, 1989). When tested for recognition of other H5 viruses, the CTL clone recognized the HA of A/Turkey/Ireland/1378/83 (H5N8) but not that of A/Chicken/Pennsylvania/1370/83 (H5N2), even though these viruses contain identical HA amino acid 158-to-169 sequences. These results suggest that differences outside the CTL epitope affected CTL recognition of the intact HA molecule. The H5 HA site defined in these studies is, therefore, important in both CTL and B-cell recognition, as well as the pathogenesis of the virus.  相似文献   

13.
Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H+ ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity.  相似文献   

14.
Homan EJ  Bremel RD 《PloS one》2011,6(10):e26711
Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1) of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968–2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2.  相似文献   

15.
Yearly vaccination with the trivalent inactivated influenza vaccine (TIV) is recommended, since current vaccines induce little cross neutralization to divergent influenza strains. Whether the TIV can induce antibody-dependent cellular cytotoxicity (ADCC) responses that can cross-recognize divergent influenza virus strains is unknown. We immunized 6 influenza-naive pigtail macaques twice with the 2011–2012 season TIV and then challenged the macaques, along with 12 control macaques, serially with H1N1 and H3N2 viruses. We measured ADCC responses in plasma to a panel of H1 and H3 hemagglutinin (HA) proteins and influenza virus-specific CD8 T cell (CTL) responses using a sensitive major histocompatibility complex (MHC) tetramer reagent. The TIV was weakly immunogenic and, although binding antibodies were detected by enzyme-linked immunosorbent assay (ELISA), did not induce detectable influenza virus-specific ADCC or CTL responses. The H1N1 challenge elicited robust ADCC to both homologous and heterologous H1 HA proteins, but not influenza virus HA proteins from different subtypes (H2 to H7). There was no anamnestic influenza virus-specific ADCC or CTL response in vaccinated animals. The subsequent H3N2 challenge did not induce or boost ADCC either to H1 HA proteins or to divergent H3 proteins but did boost CTL responses. ADCC or CTL responses were not induced by TIV vaccination in influenza-naive macaques. There was a marked difference in the ability of infection compared to that of vaccination to induce cross-reactive ADCC and CTL responses. Improved vaccination strategies are needed to induce broad-based ADCC immunity to influenza.  相似文献   

16.
Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.  相似文献   

17.
A good secondary IgG response to the hemagglutinin (HA) of influenza virus has been obtained in vitro in Marbrook-type cultures of influenza-primed mouse spleen cell suspensions stimulated with inactivated influenza virus. Anti-HA antibody was quantitated by a solid phase radioimmunoassay (RIA) by using purified HA as substrate. The T dependence of this secondary response was shown by depletion of T cells and reconstitution with a source of primed or unprimed T cells. The help given by T cells primed to the homologous virus was many times greater than that given by unprimed T cells, although the latter was significant. The system described will allow investigation of the specificity requirements of helper T cells engaged in the anti-HA response.  相似文献   

18.
Human influenza viruses preferentially bind to sialic acid-α2,6-galactose (SAα2,6Gal) receptors, which are predominant in human upper respiratory epithelia, whereas avian influenza viruses preferentially bind to SAα2,3Gal receptors. However, variants with amino acid substitutions around the receptor-binding sites of the hemagglutinin (HA) protein can be selected after several passages of human influenza viruses from patients’ respiratory samples in the allantoic cavities of embryonated chicken eggs. In this study, we detected an egg-adapted HA S190R mutation in the pandemic H1N1 virus 2009 (pdmH1N1), and evaluated the effects of this mutation on receptor binding affinity and pathogenicity in mice. Our results revealed that residue 190 is located within the pocket structure of the receptor binding site. The single mutation to arginine at position 190 slightly increased the binding affinity of the virus to the avian receptor and decreased its binding to the long human α2,6-linked sialic acid receptor. Our study demonstrated that the S190R mutation resulted in earlier death and higher weight loss in mice compared with the wild-type virus. Higher viral titers at 1 dpi (days post infection) and diffuse damage at 4 dpi were observed in the lung tissues of mice infected with the mutant virus.  相似文献   

19.
Proteolytic cleavage of the hemagglutinin (HA) of human influenza viruses A/Aichi/2/68 (H3N2) and A/WSN/34 (H1N1) from HA0 to HA1/HA2 was studied in primary human adenoid epithelial cells (HAEC). HAEC contain a mixture of ciliated and nonciliated secretory cells and mimic the epithelium membrane of the human respiratory tract. Pulse-chase labeling with [(35)S]methionine and Western blot analysis with anti-HA antibodies of cellular and virion polypeptides showed that HAEC cleaved newly synthesized HA0 to HA1/HA2 ("cleavage from within") and significant amounts of cleaved HA accumulated within cells. It was also shown that HAEC was able to cleave HA0 of incoming virions ("cleavage from without"), whereas the HA0 of nonabsorbed virions free in extracellular fluid were not cleaved, supporting the conclusion that HA0 cleavage in HAEC is cell associated. Low-molecular-weight inhibitors of serine proteases, aprotinin and leupeptin, when added to influenza virus-infected HAEC suppressed HA0 cleavage and reduced the amount of cleaved HA1/HA2 both in cells and in progeny virions and thus diminished the infectivity of the virus. In contrast, the addition of fetal bovine serum, containing a number of high-molecular-weight antiproteases that compete for proteases in the extracellular environment, did not inhibit influenza virus growth in HAEC. These data suggest that in human respiratory epithelium the cleavage of influenza virus HA containing a single arginine in the proteolytic site (i) is a cell-associated process accomplished by serine-type protease(s) and (ii) is sensitive to low-molecular-weight exogenous inhibitors of serine proteases.  相似文献   

20.
The intranasal administration of influenza hemagglutinin (HA) vaccine with Surfacten, a modified pulmonary surfactant free of antigenic c-type lectins, as a mucosal adjuvant induced the highest protective mucosal immunity in the airway. The intranasal immunization of mice with HA vaccine (0.2 microg)-Surfacten (0.2 microg) selectively induced the neutralizing anti-HA IgA, but not IgG, and conferred nearly maximal protection in the airway, without inducing a systemic response. In contrast, intranasal inoculation of vaccine with 0.2 microg of the potent mucosal adjuvant cholera toxin B* (CT-B*), prepared by adding 0.2% native CT to the B subunit of CT, induced both anti-HA IgA and IgG in the airway and in the serum. The intranasal administration of HA vaccine alone induced a limited amount of mucosal IgA against influenza virus. Although the s.c. administration of HA vaccine prominently induced serum IgG and IgA, Surfacten and CT-B* did not enhance their induction, and the concentrations of Abs leaking into the airways were insufficient to prevent viral multiplication. The intranasal administration of HA-Surfacten stimulated the expression of MHC class II, CD40, and CD86 molecules in the CD11c-positive cells isolated from the nasal mucosa, but not the expression of cells from the lungs or spleens. Lymphocytes isolated from the airway mucosa after intranasal HA-Surfacten immunization prominently induced TGF-beta1 which, compared with inoculation without Surfacten, promoted an Ag-specific mucosal IgA response. Surfacten alone, however, did not induce TGF-beta1. Our observations suggest that Surfacten, by mimicking the natural surfactant, is an effective mucosal adjuvant in the process of airway immunization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号