首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
欧阳晓  朱翔  贺清云 《生态学报》2020,40(16):5478-5489
基于生态系统服务和生态系统健康的生态风险评估框架为城市群生态风险管理和国土生态修复提供新的视角。以生态风险评估框架为基础,综合运用生态系统服务、生态系统健康评估模型以及相关分析法对长株潭城市群展开生态风险评价,并对风险程度进行分类。结果表明:(1)城市群的城市化水平提升,区域生态风险也随之增加。生态系统服务价值、生态系统组织、生态系统活力、生态系统弹性等生态指数呈现下降趋势。(2)人工表面比率和生态指数之间的Pearson相关系数表明,人工表面比率与生态指数之间存在负相关关系,人工表面比率是生态风险提升的关键因素。(3)城市群人工表面比率要控制在36%以下,以进行生态风险管理和国土生态修复。总的来说,评价框架可以作为区域生态风险的评价终点。  相似文献   

2.
生态系统综合评价的内容与方法   总被引:100,自引:8,他引:100  
傅伯杰  刘世梁  马克明 《生态学报》2001,21(11):1885-1892
生态系统综合评价是系统分析生态系统的生产及服务能力,对生态系统进行健康诊断,做出综合的生态分析和经济分析,评价其当前状态,并预测生态系统今后的发展趋势,为生态系统管理提供科学依据。从总体上讲,综合评价更强调生态系统一系列产品与服务功能之间的权衡,具有很强的实践意义。许多学者对不同的生态系统服务功能进行了经济价值评估,但缺乏对生态系统的产品、服务、健康与管理之间关系的进一步探讨。对生态系统服务功能评价、健康评价的生态管理与预测进行了系统论述,目的是提出生态系统综合评价的框架,指导生态系统评价行动及生态系统管理。  相似文献   

3.
Xu  Fu-Liu  Dawson  Richard W.  Tao  Shu  Cao  Jun  Li  Ben-Gang 《Hydrobiologia》2001,443(1-3):159-175
Ecosystem health is a newly proposed concept that sets new goals for environmental management. Its definition, indexing and assessment methods are still being perfected. An Ecological Modeling Method (EMM) for lake ecosystem health assessment is proposed in this paper. The EMM's procedures are: (1) to analyze the ecosystem structure of a lake in order to determine the structure and complexity of the lake's ecological model; (2) to develop a model having ecological health indicators, by designing a conceptual diagram, establishing model equations, estimating model parameters and being integrated with ecological indicators; (3) to compare the simulated and observed values of important state variables and process rates (i.e. model calibration) in order to evaluate the applicability of the model to lake ecosystem health assessment; (4) to calculate ecosystem health indicators based on the developed model; and (5) to assess lake ecosystem health according to the values of the ecosystem health indicators. The EMM was applied, as a case study, to the ecosystem health assessment of a eutrophic Chinese lake (Lake Chao) between April 1987 and March 1988. A relative order of health states from poor to good was determined as follows: August–October 1987 > April–May 1987 > June–July 1987 > November–December 1987 > January–March 1988. These results compared quite favourably with the actual current conditions at Lake Chao. The EMM method, therefore, was suitable in assessing lake ecosystem health at Lake Chao.  相似文献   

4.
The ecosystem approach to environmental management inter-relates social, economic and environmental factors. Its incorporation into the Great Lakes Water Quality Agreement of 1978 changed the focus of the Agreement from water in a political context to politics in an ecosystem context. Because ecosystems are open and dependent on Biospheric processes for their continued operation, the Biosphere (global ecosystem) emerges as a globally integrating factor in ecosystem management. Influences leading to development of the ecosystem approach in the Great Lakes Basin included: a politically shared resource in jeopardy, pollution, a common drinking water source, common enemies, advances in ecosystem theory, citizen groups, international political institutions, common economic and cultural ties, and a sense of crisis. A rationale is presented for viewing nations as politically defined ecosystems.  相似文献   

5.
太湖湖滨带生态系统健康评价   总被引:16,自引:4,他引:16  
根据湖滨带生态系统的特点,运用综合健康指数法建立了湖滨带生态系统健康评价体系,由目标层、准则层、指标层构成,其中准则层由湖滨带水质状况、底泥状况、植被状况、其它生物状况(浮游动物、浮游植物、底栖动物)、岸带物理状况5项组成,指标层由总氮、总磷、溶解氧、挺水植物覆盖率等15项指标构成。采用专家打分法、熵值法分别确定了准则层、指标层的权重系数。对太湖湖滨带33个点位进行了采样分析,并进行无量纲化处理后应用到所建立的评价体系中。评价结果显示33个点位中为"很健康"、"健康"、"亚健康"、"疾病"、"严重疾病"的分别占0%、24.2%、21.2%、51.5%及3.0%,也即超过一半的点位处于"疾病"状态。只有东太湖刚刚超过"健康"分数的下限,东部沿岸、贡湖、南部沿岸均处于"亚健康"状态,而梅梁湾、竺山湾、西部沿岸属于"疾病"状态,且竺山湾的生态健康状态最差。该评价结果与太湖湖滨带各分区的实际调查情况相符合,评价方法可靠性、可行性较强,可为其它湖泊湖滨带的生态系统健康评价提供一定的参照。  相似文献   

6.
1. Philosophically, the term ‘river health’ is useful because it is readily interpreted by the general public and evokes societal concern about human impacts on rivers. The common goal of achieving healthy rivers unites ecologists and the general public because the value of the ecologists’ contributions is clear (and, hence, funded). The difficulty arises in the choice of relevant symptoms because there is a wide variety that can be measured with varying accuracy at a broad range of spatial scales. These indicators may respond to impacts at different time scales, and no single indicator is a ‘silver bullet’ that reveals river health unequivocally. 2. In practice, choice of indicator often shows personal bias, technical considerations, and constraints of knowledge. Selection of appropriate spatial and temporal scales for these measures is crucial. Although most measurements are spot samples (e.g. concentration, abundance, species richness), assessment of river health based on changes in ecological processes such as post-disturbance recovery rate or nutrient spiralling lengths may be more suitable in some cases. 3. Problems include validation of the indicator, its response time at a range of scales, and the reliability of its measurement. Assessment of river health should be accurate, timely (warning of deterioration instead of waiting until the patient is terminal), rapid (so that the response is swift), and inexpensive. The connectedness of running waters with their floodplains and catchments must be explicitly recognized. Hydrological and geomorphological modifications of rivers usually affect their health by severing or impairing the linkages, and the ‘cure’ may lie in addressing these causes. Often, we need landscape-level data for management because this is the scale where cumulative effects of impacts are evident. 4. The prognosis is uncertain. We need to explore further the use of integrative measures of river health, and focus on establishing a link between the measure and impaired ecological integrity. Ecosystem-level variables (e.g. estimates of production or respiration) show promise and recent technological advances make these more accessible. Data analytical approaches (e.g. multimetric vs. predictive models) need further debate but must not overlook the importance of high quality and relevant input data. Appropriate choice of indicators, rigorous sampling and analysis, and careful data interpretation must be matched with effective communication to policy-makers and the public. When this occurs, the concept of ‘river health’ becomes more than just a rhetorical tool.‘  相似文献   

7.
生态文明建设和生态环境治理是国家治理的基本任务之一,我国已经明确提出了提升生态系统质量和稳定性的目标。然而,生态系统质量的科学概念及其状态演变的评估理论和方法却是一直困扰学术界且尚未形成广泛共识的难题。本文在梳理生态系统质量的科学概念及其状态演变研究进展基础上,借鉴物质生产的产品质量、质量管理和质量评价概念,论述了生态系统质量概念及生态学理论基础,从生态系统的自然属性-社会属性-经济属性及其相互关系,生态系统组分-结构-过程-功能-服务-功效的级联关系,系统要素-系统-环境互馈关系,以及生态系统的状态波动-数量变化-质量改变的逻辑关系等视角,讨论了生态系统质量及演变的科学内涵,进而从自然资源环境系统、典型生态系统、区域宏观生态系统、生态工程效应/功效等方面,提出了多应用目标的生态系统质量变化评估的视角和方法。  相似文献   

8.
This paper provides a synthesis of the presentations made by participants at the International Symposium on Aquatic Ecosystem Health (July 23–26, 1990, Waterloo, Ontario, Canada). A working definition of the ecosystem concept and a framework for defining ecosystem health, are proposed, based on both hard and soft science. Assessment of ecosystem health can be approached either from the bottom up (reductionist approach) or from the top down (holistic approach). The Symposium clearly followed the former approach; present approaches to science and management are also generally reductionist. It is argued that realistic solutions require primarily holistic approaches; such are often claimed but rarely attained. Reductionist approaches are useful for diagnosis and prediction (i.e., warning of potential problems), provided that they are based on appropriate statistical, biological, and societal levels of significance.  相似文献   

9.
基于生态系统服务的生态风险评价研究进展   总被引:5,自引:0,他引:5  
康鹏  陈卫平  王美娥 《生态学报》2016,36(5):1192-1203
生态风险评价对科学管理与保护生态系统具有重要的意义,为弥补传统生态风险评价方法的不足和提高风险管理的效率,将生态系统服务引入生态风险评价中进行发展和完善,成为了当前生态风险评价研究的前沿和热点。系统分析了生态系统服务在生态风险评价中的应用,指出生态系统服务在问题形成阶段中可明确保护对象和属性,在风险分析阶段可联系生态系统结构过程作用,在风险表征阶段及后续阶段能可提供清晰明确的评价结果,加强风险交流和管理,能有效地改进生态系统传统生态风险评价。在实践上,基于生态系统服务的生态风险评价可从3个不同层面开展:一是针对外界压力对某类特定功能或者系统中某些服务功能的影响,构建基于某种特定服务的实体属性评价方法;二是针对外界压力作用下生态系统结构与过程变化下对功能影响,构建基于复杂生态系统作用的评价方法,实现对生态风险的模拟评价;三是评价社会生态系统下外界驱动对人类福祉的影响时,可将DPSIR(Drive-Pressure-State-Impact-Response)理论模型运用到生态风险管理中,也可基于景观生态系统服务与压力源的空间作用关系,实现社会生态系统风险评价与管理。作为生态风险表征手段,可基于生态系统服务损失与不利服务进行表征,也可选取热力学等指标作为评估量纲。从理论、评价方法、风险管理等方面对基于生态系统服务生态风险评价给予展望。  相似文献   

10.
Assessment of risk to public health or environmental resources requires competent characterization of stressors and corresponding effects. Because of the complexity of most stressor-response relationships, it is impossible to completely characterize all the variables, so a select set of measurements is made to reflect the most critical components. Such measurements, or indicators, are included in monitoring programs to estimate trend, stressor source, or magnitude of effects and lead to thresholds for management action or restoration. Although a wide variety of programs and program objectives exists, there are some common challenges for indicator development, including a strong link to management actions. Indicator measurements used in U.S. Environmental Protection Agency (USEPA) risk assessment activities must stem from collaboration among managers, risk assessors, scientists and stakeholders. The primary objective of the USEPA's Fifth Symposium of the National Health and Ecological Effects Research Laboratory was to improve health and ecological risk assessment through dedicated sessions that maximized interaction and discussion among these groups. Existing measurements were challenged for appropriateness, efficiency and scientific validity. Emerging science was explored for greater understanding, better interpretation, and improved methodology. A secondary objective was to uncover and exploit common indicators and supporting data for human health and ecological models.  相似文献   

11.
The Australian and New Zealand Environment and Conservation Council (ANZECC) and the Australian Water Resources Council (AWRC) have developed a National Water Quality Management Strategy which seeks to ensure that the nation's water resources are managed on a sustainable basis. An important element of this strategy are the Australian Water Quality Guidelines which focus on the protection of Australian freshwater and marine ecosystems. Here the aim is to protect biodiversity and maintain the ecological integrity of each marine and freshwater resource. Specific guidelines have been formulated in terms of key indicators of quality, with a single reference value or ranges of reference values provided for guidance. For those indicators where ranges are provided, it is the expectation that State environmental and resource management agencies will undertake local, site-specific investigations of their own systems to define the specific levels to be adopted. For the first time, specific and quantitative biological indicators have been introduced; these are species richness, species composition, primary production, and ecosystem function.As Australia progresses towards broader, more holistic, ecologically-based management of the nation's water resources, the present water quality guidelines must be extended to ecosystem or environmental guidelines, where the maintenance of adequate water quality is seen as only one (albeit important) component. Other considerations must include habitat protection, sediment quality, and stream flow maintenance. This increased emphasis on more ecologically-focused management of Australia's inland and coastal waters will present a number of challenges for the three major groups involved: the community, the managers, and the researchers. These challenges are discussed.Based on a paper presented at a Workshop on Biological Assessment of Aquatic Ecosystem Health, Sydney, 1–2 October 1992.  相似文献   

12.
基于“参照系-现状-变化量”的生态系统评估方法   总被引:1,自引:1,他引:0  
生态系统评估是开展生态系统管理的重要手段,其评估结果已成为衡量区域生态系统状况优劣的重要依据。由于没有充分考虑生态系统禀赋的区域差异性,缺乏有效区分气候变化和人类活动影响的手段,导致生态系统评估结果的实用性与区域可比性一直存有争议。在生态大数据背景下,基于生态完整性理论,结合长期地面监测数据、野外调查数据、遥感数据等海量数据,耦合生态系统过程模型,构建了基于“参照系-现状-变化量”(RSD)的生态系统评估体系,以受干扰较少接近原生、完整的地带性植被生态系统(完整的生态系统)作为参照系,其表现出来的组成、结构、功能等特征为参照条件,生态系统状况现状与参照条件的偏离程度作为评估生态系统优劣程度的依据,从而将现状评估转变为变化量评估,增强评估结果的时空可比性。并以生态系统过程模型为工具,利用RSD评估方法评估了中国陆地生态系统生产力功能,验证了该方法体系的可行性。评估结果显示,2000—2018年我国植被净初级生产力(NPP)参照值、现实值和变化量均表现为上升趋势,而NPP现实值与变化量的空间分布存在显著差异,基于RSD的评估方法较好地解决了评估结果区域不可比的问题。研究对完善我国生态系统评...  相似文献   

13.
14.
Use of models for integrated assessment of ecosystem health   总被引:2,自引:0,他引:2  
An argument is presented for a greater use of numerical models in integrated assessment of ecosystem health. Ecosystem health has many facets which are interconnected and interact, and which can only be measured in integrated assessments. Modelling is an essential feature of integrated assessment being one of the few ways human groups can form a consensus understanding of the complex dynamics which occur. Functional assumptions are made explicit. The argument is expanded in response to a series of key questions: What is ecosystem health? How do we do integrated assessments? What is modelling? What are some successful examples? What should one conclude? The answers are illustrated with references to the International Joint Commission's program to develop and implement Remedial Action Plans for the Great Lakes' Areas of Concern, particularly in the Bay of Quinte, Lake Ontario. Three recommendations are offered: (i) Increase the use of models, (ii) Build models with existing data and hypotheses before initiating new programs, and (iii) Allow for iterative model development but be prepared to build a new model when a new problem arises.  相似文献   

15.
桑沟湾养殖生态系统健康综合评价   总被引:7,自引:0,他引:7  
桑沟湾是我国北方以筏式养殖利用为主的典型海湾,来自养殖的压力对海湾生态系统和养殖自身的健康发展产生了影响.利用《海洋养殖生态系统健康综合评价:方法与模式》建立的方法,对桑沟湾这一养殖生态系统的健康进行了综合评价.结果表明:桑沟湾养殖生态系统受到中等程度的压力,主要来自较高的养殖密度、较大的养殖面积和陆源营养盐的输入;生态系统状态等级为较好,其中水交换、水体环境和底质环境均为较好;自然生物群落状态为中等;生态系统响应中的养殖病害问题和养殖产品质量问题为中等.总体评价,桑沟湾养殖生态系统健康勉强达到较好水平,控制养殖密度和规模等措施是改善桑沟湾生态系统健康的必要途径.  相似文献   

16.
地下水生态系统健康评价指标体系的构建   总被引:9,自引:1,他引:9  
孙才志  刘玉玉 《生态学报》2009,29(10):5665-5674
地下水生态系统是重要的生态系统类型,由于地下水资源不合理的开发利用和污染物排放强度的增大、并长期积累,已导致许多地方产生生态环境劣变,甚至酿成难以弥补的严重后果,地下水生态系统健康问题已经成为许多国家和地区重点关注的环境问题之一.在科学把握地下水生态系统健康的概念和内涵的基础上,从系统结构特征、生态功能、资源功能、系统保护以及社会环境等5个方面选取了29个典型指标构建了地下水生态系统健康指标体系,对关键评价指标的意义进行了具体分析.出于服务于地下水生态系统健康评价的目的,对重要指标的评价标准进行了划分,并探讨了地下水生态系统健康评价的主要方法及发展方向,研究成果在一定程度上可以丰富生态系统健康评价研究理论与方法体系.  相似文献   

17.
Environmental problems, such as global warming, the limited supply of sustainable energy, the depletion of natural resources, hazardous emissions released into the atmosphere and waste, are increasing global concerns. Therefore, individuals, communities, and businesses need to address environmental protection and sustainability. Environmental impact assessments are needed to identify, mitigate, and control aspects that affect the environment or a company's products, services, or activities. In this study, a general environmental aspect and impact assessment approach, which can be applied to any company that is involved in the production or service sector, is created. An environmental impact pattern that consists of 10 main and 32 sub-categories was formed based on the ISO 14001, environmental studies and field applications. The developed approach was applied to the dyeing units of a manufacturing firm. Sixteen environmental aspects were identified and assessed using the environmental impact template via the environmental failure mode and effect analysis (E-FMEA) method. The developed-approach can be applied to each sector, which will enable us to perform a detailed analysis of the environmental aspects in the environmental impact category. This approach provides a checklist for the environmental impact studies of businesses and has been pioneered as an effective method for company resources to improve their environmental performance.  相似文献   

18.
19.
唐得昊  邹欣庆  刘兴健 《生态学报》2013,33(4):1240-1250
生态系统健康评价是生态系统保护和监测研究的重要内容,该过程迫切需要综合性强、准确性高的指标,能质和生物多样性指标都是生态系统健康评估中的有效指标.以江苏省海岸带游泳和底栖生物群落为对象,沿海岸线从海州湾到长江入海口北岸选取15个站点,调查研究江苏省海岸带生态系统能质和生物多样性及其空间分布格局.结果表明:江苏海岸带除了中部地区能质和结构能质值较一致(都偏小)外,南北差异明显,生物多样性指数空间分布情况为南部Margalef指数略大于北部,中部较小,Shannon Wiener和Simpson指数空间分布都为南部>中部>北部;能质与生物多样性指标在高级生态系统中反映的生态系统健康状态一致,在中低级生态系统中差异明显;能质与生物多样性指标关联程度低,前者的测算侧重于生态系统中物种的等级,后者的测算侧重于物种的数量;总结能质和生物多样性指标在理论支撑、建立理论视角、与生态系统健康对应关系、应用模型以及局限性等方面的差异,研究结果在一定程度上可以丰富和完善生态系统健康评价研究理论与方法体系.  相似文献   

20.
Abstract

The environment is a complex system where humans, materials (e.g. pollutants), and ecological (e.g. plants, animals, microbes) and meteorological conditions interact with each other. The impact of humans potentially causes significant damage to either the environment (e.g. oil spills may pollute coastal ecosystems) or turns against humans themselves by favoring the growth of unwanted species (e.g. poor sanitation increases microbial populations that cause the risk of large numbers of humans falling ill). Thus, this paper presents a flexible method for quantifying either ecological risks (i.e. the percentage likelihood of adverse effects on the ecosystem due to its exposure to stressors such as chemicals, fishing, etc.) or microbial risks (i.e. the likelihood of negative effects in humans due to their exposure to microbial pathogens). The method uses population modeling to simulate future changes in the numbers of key-species (e.g. fish, corals, sharks, parasites), in various scenarios including the impacts of humans, adverse weather and risk management. Finally, risk is calculated as the probability of the quasi-extinction or quasi-explosion of key-species over time, and then is categorized so that the risks involved may be better communicated to decision-makers. Using the method is illustrated in three different real cases in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号