首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
蓖麻毒素与其单克隆抗体相互作用动力学研究   总被引:3,自引:0,他引:3  
表面等离子体激元共振(SPR)是一种可微量、实时、动态地监测生物分子相互作用的生物传感技术。蓖麻毒素为核糖体失活蛋白,具有很强的细胞毒性作用。通过SPR技术研究了两种抗蓖麻毒素的单克隆抗体C5、D12与蓖麻毒素相互作用的动力学,计算出两者的亲和常数分别为2.49×108mol-1·L和7.9×108mol-1·L,并对两种抗体的抗原表位进行了分析。  相似文献   

2.
蓖麻毒素(Ricin)是一种毒蛋白,能抑制蛋白质合成.近年来被用来合成肿瘤导向药物一免疫毒素,在临床应用中仍具有一定的副作用.研究Ricin在细胞内的逆向转运途径有助于其在临床应用中更加完善.本文就Ricin在细胞内的逆向转运途径作一综述.  相似文献   

3.
解析比较蛋白质组学筛出的差异蛋白Annexin1的生物学功能,证实其是否在肝癌转移复发中发挥作用. 分别以RT-PCR、蛋白质印迹及细胞免疫化学对差异蛋白Annexin1在转移潜能不同人肝癌细胞系中的表达情况进行再验证,然后构建Annexin1反义表达质粒,转染高转移潜能人肝癌细胞系MHCC97H,通过对MHCC97H细胞的运动、侵袭、凋亡、生长周期、MMPs分泌、克隆形成等系列检测,观察目的蛋白表达降低对其生物学行为的影响,特别是转移特性的影响. 验证结果均证实Annexin1在有转移潜能人肝癌细胞系MHCC97L、MHCC97H中呈高表达. 转染Annexin1反义重组表达质粒后,MHCC97H细胞中Annexin1的表达被成功抑制. 依据MHCC97H/pcDNA3.1(+) AS Annexin1,MHCC97H/ pcDNA3.1(+),MHCC97H的检测排序,转染反义重组质粒后的MHCC97H细胞穿过上室底膜的细胞数 (运动实验) 分别为:11.13±3.31,18.88±2.03,21.86±3.38;穿过人工基底膜细胞数 (侵袭实验) 分别是:16.43±2.23,16.40±1.57,16.86±1.52;细胞平均集落形成率 (克隆形成实验) 分别为:(14.33±0.46)%,(19.35±0.49)%,(20.25±0.35)%;MHCC97H细胞凋亡比例 (FCM分析) 依次为22.2%,6.44%,6.97%;细胞周期各时相的比例依次为:G0-G1期79.5%/76.34%/80.5%,S期13.26%/14.4%/9.69% ,G2-M期7.25%/9.26%/9.81%;细胞培养上清MMP9的定量结果依次为:26.37 μg/L,28.00 μg/L,31.90 μg/L;MMP2定量结果依次为29.46 μg/L,26.37 μg/L,26.53 μg/L. 明胶酶谱分析细胞培养上清显示,转染Annexin1反义重组表达质粒的MHCC97H细胞分泌的MMP9活性与对照比变化不明显. 综合上述结果发现,转染Annexin1反义表达质粒MHCC97H细胞运动能力及集落形成率明显降低,凋亡细胞的比例增加,而侵袭潜能,细胞周期时相,细胞分泌MMP2、MMP9的量均变化不明显. 提示,差异蛋白Annexin1可能通过影响细胞凋亡和细胞运动在肝癌细胞侵袭转移过程中发挥作用.  相似文献   

4.
组织金属蛋白酶抑制因子3(TIMP3)在肝癌中的具体作用机制尚不明确。该文探讨了TIMP3在肝癌细胞中的表达及其对细胞增殖、细胞凋亡、细胞周期的影响。通过q RT-PCR和Western blot检测肝癌细胞株(97H、97L和HUH7)和人正常肝细胞(LO2)中TIMP3的表达情况。将过表达TIMP3的质粒转染进97H和HUH7细胞,利用q RT-PCR和Western blot检测转染后细胞的TIMP3表达情况。通过MTT实验和活细胞工作站检测过表达TIMP3对肝癌细胞增殖的影响。此外,通过流式细胞术检测过表达TIMP3对肝癌细胞凋亡和细胞周期的影响,通过划痕实验检测表达TIMP3对肝癌细胞迁移的影响。最后,利用GESA软件进行基因富集分析以及Int Act数据库构建相互作用蛋白网络图对TIMP3相关生物学功能进行探索。研究结果表明, 97H、97L和HUH7细胞中TIMP3的表达比LO2细胞中低。97H和HUH7细胞转染TIMP3质粒后RNA及蛋白水平明显升高,且过表达TIMP3可以促进细胞增殖,促进G1期向S期转化,抑制细胞凋亡,下调Bax的表达,上调Bcl-2、Bcl-xl的...  相似文献   

5.
将胡杨Na /H 逆向转运蛋白基因PeNhaD1,分别转入对盐敏感的缺失质膜和缺失液泡膜Na /H 逆向转运蛋白基因的酵母突变菌株ANT3和GX1中。结果表明,在pH6.0、Na 浓度为80mmol/L(固体培养基)或400mmol/L(液体培养基)的条件下,转化具有目的基因的酵母ANT3具有更高的耐盐性,而将目的基因转化到突变株GX1时,却不能提高其耐盐性。实验结果说明PeNhaD1可能是通过编码质膜Na /H 逆向转运蛋白而提高酵母的耐盐性的,推测其在胡杨耐盐机制中的作用可能是提高拒盐性。  相似文献   

6.
本文旨在构建容积调控性阴离子通道主要成分LRRC8A的细胞模型,并应用该模型研究LRRC8A的生理特性。构建LRRC8A和YFP-H148Q/I152L真核表达载体,应用脂质体转染、抗生素筛选和有限稀释,获取共表达LRRC8A和YFP-H148Q/I152L的Fisher大鼠甲状腺滤泡上皮(Fischer rat thyroid, FRT)细胞。倒置荧光显微镜观察目的基因表达情况,荧光淬灭动力学实验检测LRRC8A和YFP-H148Q/I152L的功能。获得用于研究LRRC8A容积调控性阴离子通道的细胞模型,并应用该细胞模型研究LRRC8A的生理特性,包括阴离子转运特性、渗透压对LRRC8A的开放、阴离子转运速度的影响以及氯离子通道抑制剂对LRRC8A的作用。结果显示:(1)成功获得共表达LRRC8A和YFP-H148Q/I152L的FRT细胞,该细胞模型可用于LRRC8A容积调控性氯离子通道生理特性的研究。(2)在低渗状态下,LRRC8A容积调控性阴离子通道激活,可转运阴离子,如:碘离子和氯离子等;YFP-H148Q/I152L可用于研究阴离子的转运速度;渗透压是LRRC8A容积调控性阴离子通道开放的调控因素,其开放与渗透压呈负相关;氯离子通道抑制剂对LRRC8A通道的转运功能具有抑制作用,并呈剂量依赖关系。上述结果提示,本研究成功构建LRRC8A细胞模型,且应用该模型研究显示LRRC8A具有经典的容积调控性阴离子通道的特性。  相似文献   

7.
该文研究窖蛋白(Caveolin-1)对乳腺癌细胞系MCF-7细胞增殖与存活的影响。运用蛋白质印迹方法(Western blot)检测发现,caveolin-1在5株不同细胞系均只有低表达。运用电穿孔转染方法在乳腺癌细胞系中高表达Caveolin-1,运用Western blot检测转染后Caveolin-1表达情况发现,转染后细胞内Caveolin-1表达上升,并具有生物活性。运用单核细胞直接细胞毒性测定法(MTT)检测发现,转染后乳腺癌细胞系MCF-7增殖速度降低。运用Western blot方法和免疫荧光(immunofluorescence)方法检测转染后细胞凋亡途径的变化,磷酸化的P38蛋白含量上升,Bax表达量明显上升。据此推测Caveolin-1抑制MCF-7细胞的增殖和存活,并诱导基于Bax途径的细胞凋亡。  相似文献   

8.
利用增强型绿色荧光蛋白(Enhancegreenflurenscentprotein,EGFP)标记不同的截短型HPV16L1蛋白(Humanpapillomavirustype16L1protein,HPV16L1),分析HPV16L1蛋白核定位信号(Nucleuslocationsignal,NLS)的作用。构建重组pFB-EGFP、pFB-EGFP-HPV16L1、pFB-EGFP-HPV16L1△NLS和pFB-EGFP-NLSHPV16L1p转移载体;在DH10Bac宿主菌内经Tn7转座子介导的同源重组后转染Sf-9细胞,获得重组Ac-EGFP、Ac-EGFP-HPV16L1、Ac-EGFP-HPV16L1△NLS和Ac-EGFP-NLSHPV16L1杆状病毒,感染Sf-9昆虫细胞表达相应截短型HPV16L1融合蛋白;利用荧光显微镜和激光共聚焦显微镜观察不同融合蛋白的荧光特性和核浆转运动力学过程。结果发现Ac-EGFP杆状病毒感染的Sf-9细胞内明亮的绿色荧光均匀分布;重组Ac-EGFP-HPV16L1和Ac-EGFP-NLSHPV16L1杆状病毒感染的Sf-9细胞,明亮的绿色荧光主要位于细胞核内;重组Ac-EGFP-HPV16L1△NLS杆状病毒感染的Sf-9细胞,绿色荧光局限于细胞浆内,细胞核内无绿色荧光。说明HPV16L1蛋白羧基端的23个氨基酸(GKRKATPTTSSTSTTAKRKKRKL)具有完全核定位作用,能引导HPV16L1蛋白和EGFP突破核膜屏障进入Sf-9细胞核内。  相似文献   

9.
目的:研究乙肝病毒X蛋白(HBx)通过核因子-κB(NF-κB)信号通路对半转运蛋白(ABCG2)的调节作用。方法:用特异性的NF-κB信号通路阻断剂PDTC阻断NF-κB信号通路,荧光双标激光扫描共聚焦显微镜观察L02细胞系转染HBx基因前后及PDTC加入前后NF-κB信号通路的激活、失活情况,同时用Real-time PCR和Western Blot技术检测转染前后及PDTC加入前后ABCG2在mRNA及蛋白水平的表达变化。结果:以L02细胞为参照,转染HBx基因后的L02-HBx细胞NF-κB信号通路被激活,ABCG2 mRNA和蛋白水平分别增加3.62±0.15和4.61±0.73倍,差异有统计学意义(P<0.05);PDTC作用24h后L02/HBx细胞NF-κB信号通路阻断,ABCG2 mRNA和蛋白表达分别为2.15±0.32倍和2.37±0.55倍,与未加入PDTC作用的L02-HBx细胞相比均有统计学意义(P<0.05)。结论:NF-κB信号通路是HBx上调ABCG2表达的途径之一。  相似文献   

10.
拟南芥液泡膜Na+/H+逆向转运蛋白研究进展   总被引:2,自引:0,他引:2  
盐分是植物生长发育的主要限制因素之一,而离子在胞内区室之间的选择性运动对提高植物耐盐性是至关重要的。来自于拟南芥(Arabidopsis thaliana)的AtNHX1基因可编码Na /H 逆向转运蛋白,而Na /H 逆向转运蛋白AtNHX1可将细胞质中多余的Na 排进液泡来消除Na 的毒害,维持细胞的渗透平衡,提高植物的耐盐性。简要综述了AtNHX1基因及Na /H 逆向转运蛋白AtNHX1的特征,AtNHX1的耐盐机制以及植物耐盐基因工程改良等方面的研究进展。  相似文献   

11.
The plant toxin ricin is transported retrogradely from the cell surface to the endoplasmic reticulum (ER) from where the enzymatically active part is retrotranslocated to the cytosol, presumably by the same mechanism as used by misfolded proteins. The ER degradation enhancing alpha-mannosidase I-like protein, EDEM, is responsible for directing aberrant proteins for ER-associated protein degradation. In this study, we have investigated whether EDEM is involved in ricin retrotranslocation. Overexpression of EDEM strongly protects against ricin. However, when the interaction between EDEM and misfolded proteins is inhibited by kifunensin, EDEM promotes retrotranslocation of ricin from the ER to the cytosol. Furthermore, puromycin, which inhibits synthesis and thereby transport of proteins into the ER, counteracted the protection seen in EDEM-transfected cells. Coimmunoprecipitation studies revealed that ricin can interact with EDEM and with Sec61alpha, and both kifunensin and puromycin increase these interactions. Importantly, vector-based RNA interference against EDEM, which leads to reduction of the cellular level of EDEM, decreased retrotranslocation of ricin A-chain to the cytosol. In conclusion, our results indicate that EDEM is involved in retrotranslocation of ricin from the ER to the cytosol.  相似文献   

12.
Certain protein toxins, including cholera toxin, ricin, and Pseudomonas aeruginosa exotoxin A, are transported to the lumen of the endoplasmic reticulum where they retro-translocate across the endoplasmic reticulum membrane to enter the cytoplasm. The mechanism of retrotranslocation is poorly understood but may involve the endoplasmic reticulum-associated degradation pathway. The AAA ATPase p97 (also called valosin-containing protein) participates in the retro-translocation of cellular endoplasmic reticulum-associated degradation substrates and is therefore a candidate to participate in the retrotranslocation of protein toxins. To investigate whether p97 functions in toxin delivery to the cytoplasm, we measured the sensitivity to toxins of cells expressing either wild-type p97 or a dominant ATPase-defective p97 mutant under control of a tetracycline-inducible promoter. The rate at which cholera toxin and related toxins entered the cytoplasm was reduced in cells expressing the ATPase-defective p97, suggesting that the toxins might interact with p97. To detect interaction, the cholera toxin A chain was immunoprecipitated from cholera toxin-treated Vero cells, and co-immunoprecipitation of p97 was assessed by immunoblotting. The immunoprecipitates contained both cholera toxin A chain and p97, evidence that the two proteins are in a complex. Altogether, these results provide functional and structural evidence that p97 participates in the transport of cholera toxin to the cytoplasm.  相似文献   

13.
The human cytomegalovirus (HCMV) protein US2 hijacks the endoplasmic reticulum (ER)-associated degradation machinery to dispose of MHC class I heavy chain (HC) at the ER. This process requires retrotranslocation of newly synthesized HC molecules from the ER membrane into the cytosol, but the mechanism underlying the dislocation reaction has been elusive. Here we establish an in vitro permeabilized cell assay that recapitulates the retrotranslocation of MHC HC in US2-expressing cells. Using this assay, we demonstrate that the dislocation process requires ATP and ubiquitin, as expected. The retrotranslocation also involves the p97 ATPase. However, the mechanism by which p97 dislocates MHC class I HC in US2 cells is distinct from that in US11 cells: the dislocation reaction in US2 cells is independent of the p97 cofactor Ufd1-Npl4. Our results suggest that different retrotranslocation mechanisms can employ distinct p97 ATPase complexes to dislocate substrates.  相似文献   

14.
ADP-ribosylation factor related protein 1 (ARFRP1) is a member of the ARF-family of GTPases which operate as molecular switches in the regulation of intracellular protein traffic. Deletion of the mouse Arfrp1 gene leads to embryonic lethality during early gastrulation, suggesting that ARFRP1 is required for cell adhesion-related processes. Here we show that ARFRP1 specifically controls targeting of ARL1 and its effector Golgin-245 to the trans-Golgi. GTP-bound ARFRP1 (ARFRP1-Q79L mutant) is associated with Golgi membranes and co-localized with the GTPase ARL1. In contrast, the guanine nucleotide exchange defective ARFRP1 mutant (ARFRP1-T31N) clusters within the cytosol. ARFRP1-T31N or depletion of endogenous ARFRP1 by RNA interference disrupts the Golgi association of ARL1 and of the GRIP-domain protein Golgin-245 and alters the distribution of a trans-Golgi network marker, syntaxin 6. In contrast, the targeting of two other Golgi-associated proteins, GM130 and giantin, was unaffected. Furthermore, in Arfrp1-/ - embryos ARL1 dislocated from Golgi membranes whereas it was associated with intracellular membranes in wild-type embryos. These data suggest that lethality of Arfrp1 knockout embryos is due to a specific disruption of protein targeting, e.g., of ARL1 and Golgin-245, to the Golgi.  相似文献   

15.
ADP-ribosylation factor related protein 1 (ARFRP1) is a member of the ARF-family of GTPases which operate as molecular switches in the regulation of intracellular protein traffic. Deletion of the mouse Arfrp1 gene leads to embryonic lethality during early gastrulation, suggesting that ARFRP1 is required for cell adhesion-related processes. Here we show that ARFRP1 specifically controls targeting of ARL1 and its effector Golgin-245 to the trans-Golgi. GTP-bound ARFRP1 (ARFRP1-Q79L mutant) is associated with Golgi membranes and co-localized with the GTPase ARL1. In contrast, the guanine nucleotide exchange defective ARFRP1 mutant (ARFRP1-T31N) clusters within the cytosol. ARFRP1-T31N or depletion of endogenous ARFRP1 by RNA interference disrupts the Golgi association of ARL1 and of the GRIP-domain protein Golgin-245 and alters the distribution of a trans-Golgi network marker, syntaxin 6. In contrast, the targeting of two other Golgi-associated proteins, GM130 and giantin, was unaffected. Furthermore, in Arfrp1?/???embryos ARL1 dislocated from Golgi membranes whereas it was associated with intracellular membranes in wild-type embryos. These data suggest that lethality of Arfrp1 knockout embryos is due to a specific disruption of protein targeting, e.g., of ARL1 and Golgin-245, to the Golgi.  相似文献   

16.
ADP-ribosylation factor (ARF)-related protein 1 (ARFRP1) is a membrane-associated GTPase with significant similarity to the family of ARFs. We have recently shown that ARFRP1 interacts with the Sec7 domain of the ARF-specific guanine nucleotide exchange factor Sec7-1/cytohesin and inhibits the ARF/Sec7-dependent activation of phospholipase D in a GTP-dependent manner. In order to further analyze the function of ARFRP1, we cloned the mouse Arfrp1 gene and generated Arfrp1 null-mutant mice by gene targeting in embryonic stem cells. Heterozygous Arfrp1 mutants developed normally, whereas homozygosity for the mutant allele led to embryonic lethality. Cultured homozygous Arfrp1 null-mutant blastocysts were indistinguishable from wild-type blastocysts. In vivo, they implanted and formed egg cylinder stage embryos that appeared normal until day 5. Between embryonic days 6 and 7, however, apoptotic cell death of epiblast cells occurred in the embryonic ectoderm during gastrulation, as was shown by histological analysis combined with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling. Epiblast cells that would normally differentiate to mesodermal cells detached from the ectodermal cell layer and were dispersed into the proamniotic cavity. In contrast, the development of extraembryonic structures appeared unaffected. Our results demonstrate that ARFRP1 is necessary for early embryonic development during gastrulation.  相似文献   

17.
The enzymatic A1 chain of cholera toxin retrotranslocates across the endoplasmic reticulum membrane into the cytosol, where it induces toxicity. Almost all other retrotranslocation substrates are modified by the attachment of polyubiquitin chains and moved into the cytosol by the ubiquitin-interacting p97 ATPase complex. The cholera toxin A1 chain, however, can induce toxicity in the absence of ubiquitination, and the motive force that drives retrotranslocation is not known. Here, we use adenovirus expressing dominant-negative mutants of p97 to test whether p97 is required for toxin action. We find that cholera toxin still functions with only a small decrease in potency in cells that cannot retrotranslocate other substrates at all. These results suggest that p97 does not provide the primary driving force for extracting the A1 chain from the endoplasmic reticulum, a finding that is consistent with a requirement for polyubiquitination in p97 function.  相似文献   

18.
Y H Kim  S S Kim 《Cytokine》1999,11(4):274-281
To investigate the protection mechanism of Bcl-2 against tumour necrosis factor (TNF)-mediated cell death, the bcl2 gene was transfected into the L929 cells and stably expressed. Two clones having different sensitivity among bcl2-transfected L929 clones had been isolated, and termed clone R1 and R2. It was observed that activation of manganese superoxide dismutase (MnSOD) and suppression of Jun kinase of clone R1 and R2 were correlated with protection from TNF cytotoxicity. Upon treatment with TNF, clone R1 and R2 were more resistant than control L929 cells against TNF cytotoxicity and the protective effect of clone R1 was stronger than clone R2. However, in case of TNF plus actinomycin D treatment, clone R1 was still resistant against TNF cytotoxicity, whereas clone R2 became more sensitive than control L929 cells. The JNK activities of clone R1 and R2 were suppressed upon TNF treatment and in case of TNF plus actinomycin D treatment, clone R2 showed a marked increase in JNK activities and had higher activity than control L929 cells. The specific activities of MnSOD of clone R1 and R2 upon TNF treatment were 70 U/ml and 33 U/ml, respectively, while the MnSOD activity was not detectable in control L929 cells. When TNF and actinomycin D were treated simultaneously, MnSOD activity was not detectable in control L929 cells and bcl2 -transfected L929 cells (clone R1, R2). Consistent with these results, both clone R1 and R2 showed higher levels of MnSOD mRNA expression than control L929 cells after TNF treatment. These data suggest that suppression of Jun kinase and increase of MnSOD may be involved in inhibitory action of Bcl-2 against TNF, and the balance between MnSOD and JNK signalling pathway may be an important factor for the protection of bcl2-transfected L929 cells from TNF cytotoxicity.  相似文献   

19.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome.  相似文献   

20.
Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号