首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Determining the trophic niche width of an animal population and the relative degree to which a generalist population consists of dietary specialists are long‐standing problems of ecology. It has been proposed that the variance of stable isotope values in consumer tissues could be used to quantify trophic niche width of consumer populations. However, this promising idea has not yet been rigorously tested. By conducting controlled laboratory experiments using model consumer populations (Daphnia sp., Crustacea) with controlled diets, we investigated the effect of individual‐ and population‐level specialisation and generalism on consumer δ13C mean and variance values. While our experimental data follow general expectations, we extend current qualitative models to quantitative predictions of the dependence of isotopic variance on dietary correlation time, a measure for the typical time over which a consumer changes its diet. This quantitative approach allows us to pinpoint possible procedural pitfalls and critical sources of measurement uncertainty. Our results show that the stable isotope approach represents a powerful method for estimating trophic niche widths, especially when taking the quantitative concept of dietary correlation time into account.  相似文献   

2.
Stable isotope composition of human tissue reflects that of foods consumed, and can provide information about diet independent of artifactual remains. Here we refine and test this method by analyzing nitrogen (delta(15)N) and carbon (delta(13)C) isotope ratios in historic North American Plains Indians hair. Gas-source isotope-ratio mass spectrometry provides high-precision data for both delta(15)N and delta(13)C (+/-0.2 per thousand, 1 sigma) in single hair strands as short as 2 cm (100-150 mug). Because hair contains more carbon than nitrogen, if only delta(13)C data are needed, shorter strands (<1 cm) can be analyzed. This reduction in sample size opens new opportunities for analysis of small hair fragments found in archaeological excavations, as well as for analysis of seasonal variations in long hair strands. We find distinct isotope profiles (delta(15)N vs. delta(13)C) for two cultural groups, the Lower Brule reservation Sioux of 1892 and the reservation Blackfoot of 1892 and 1935. The resultant dietary profiles indicate a higher consumption of meat by the Blackfoot and a higher consumption of maize (or of animals that had fed on maize or other C(4) plants) by the Lower Brule. The two groups of Blackfoot yield similar isotopic profiles despite the passage of four decades, suggesting a strong role for cultural preference even as food sources change. Such stable isotope profiles can be used to link samples from the same cultural tradition based on their similar diets.  相似文献   

3.
杨蕊  韩东燕  高春霞  魏秀锦  赵静  叶深 《生态学报》2022,42(23):9796-9807
基于2016年和2020年浙江南部近海收集的71尾前肛鳗样品,通过测定碳氮稳定同位素比值计算其营养生态位指标,对比分析前肛鳗不同发育过程、不同季节及不同年份营养生态位的差异,探究营养生态位的变动规律及对资源的利用情况。结果表明:(1)2016年和2020年前肛鳗平均δ13C值分别为(-15.19±0.31)‰、(-15.90±0.45)‰;平均δ15N值分别为(12.42±0.45)‰、(12.92±0.25)‰;(2)单因素方差分析表明,2016年前肛鳗不同发育过程δ13C值差异不显著(P>0.05),δ15N值差异显著(P<0.05),不同季节间δ13C值和δ15N值均存在显著差异(P<0.05),而2020年前肛鳗不同发育过程δ13C值和δ15N值差异均不显著(P>0.05),不同季节间δ13C值存在显著差异(P<0.05),δ15N...  相似文献   

4.
Stable isotope analysis of animal tissues is commonly used to infer diet and trophic position. However, it requires destructive sampling. The analysis of carbon isotopes from exhaled CO2 is non-invasive and can provide useful ecological information because isotopic CO2 signatures can reflect the diet and metabolism of an animal. However, this methodology has rarely been used on invertebrates and never on social insects. Here, we first tested whether this method reflects differences in δ13C-CO2 between workers of the Mediterranean ant Crematogaster scutellaris (Olivier) (Hymenoptera: Formicidae, Crematogastrini) fed with sugar from beet (C3; Beta vulgaris L., Amaranthaceae) or cane (C4; Saccharum officinarum L., Poaceae). We found that a significant difference can be obtained after 24 h. Consequently, we used this technique on wild co-occurring ant species with different feeding preferences to assess their reliance on C3 or C4 sources. For this purpose, we sampled workers of C. scutellaris, the invasive garden ant Lasius neglectus (van Loon et al.) (Lasiini), and the harvester ant Messor capitatus (Latreille) (Stenammini). No significant differences in their carbon isotopic signatures were recorded, suggesting that in our study site no niche partitioning occurs based on the carbon pathway, with all species sharing similar resources. However, further analysis revealed that M. capitatus, a seed-eating ant, can be regarded as a C3 specialist, whereas L. neglectus and C. scutellaris are generalists that rely on both C3 and C4 pathways, though with a preference for the former. Our results show that this methodology can be applied even to small animals such as ants and can provide useful information on the diets of generalist omnivores.  相似文献   

5.
1. Stream salamanders and fish often co‐occur even though fish prey on and outcompete salamanders. However, the mechanisms that allow palatable salamanders to coexist with fish are unknown. 2. We tested mechanisms in the field that promote coexistence between Idaho giant salamanders (Dicamptodon aterrimus) and stream salmonid fishes in headwater streams. Previous research in this system indicated that salamander dispersal did not promote coexistence with fish. We tested the hypothesis that D. aterrimus shift their diet when they occur with fish, facilitating coexistence through local niche partitioning. 3. We used nitrogen and carbon stable isotopes to describe the trophic niche of D. aterrimus and fish in three co‐occurring populations of salamanders and fish and three populations of salamanders without fish. We used two approaches to quantify trophic niche partitioning with stable isotopes: 95% kernel density estimators and isotopic mixing models. 4. We found that salamanders and fish were generalists that consumed aquatic invertebrates primarily, but both species were also cannibalistic and predatory on one another. We also found no support for trophic niche partitioning as a coexistence mechanism because there were no differences in the trophic niche metrics among salamander populations with and without fish. 5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population‐level measure of trophic structure.  相似文献   

6.
7.
Quantifying diet is essential for understanding the functional role of species with regard to energy processing, transfer, and storage within ecosystems. Recently, variance structure in the stable isotope composition of consumer tissues has been touted as a robust tool for quantifying trophic niche width, a task that has previously proven difficult due to bias in direct dietary analyses and difficulties in integrating diet composition over time. We used carbon and nitrogen stable isotope analyses to examine trophic niche width of two sympatric aquatic snakes, banded watersnakes Nerodia fasciata and black swamp snakes Seminatrix pygaea inhabiting an isolated wetland where seasonal migrations of amphibian prey cause dramatic shifts in resource availability. Specifically, we characterized snake and prey isotope compositions through time, space, and ontogeny and examined isotope values in relation to prey availability and snake diets assessed by gut content analysis. We determined that prey cluster into functional groups based on similarity of isotopic composition and seasonal availability. Isotope variance structure indicated that the trophic niche width of the banded watersnake was broader (more generalist) than that of the black swamp snake. Banded watersnakes also exhibited seasonal variation in isotope composition, suggesting seasonal diet shifts that track amphibian prey availability. Conversely, black swamp snakes exhibited little seasonal variation but displayed strong ontogenetic shifts in carbon and nitrogen isotope composition that closely paralleled ontogenetic shifts in their primary prey, paedomorphic mole salamanders Ambystoma talpoideum. Although niche dimensions are often treated as static, our results demonstrate that seasonal shifts in niche dimensions can lead to changes in niche overlap between sympatric species. Such short‐term fluctuations in niche overlap can influence competitive interactions and consequently the composition and dynamics of communities and ecosystems.  相似文献   

8.
Analysis of nitrogen stable isotope ratios (δ15N) in white muscle and liver shows temporal stability in the trophic levels at which the two sympatric morphs of Arctic charr Salvelinus alpinus from Loch Ericht feed. The results confirm an ontogenetic dietary switch to a more piscivorous diet, occurred in all individuals of one of the morphs, above a size threshold of 16·5 cm fork length, indicating that this occurs at a high frequency in this population and that once made, the return to feeding to a lower trophic level is infrequent.  相似文献   

9.
A number of recent studies have attempted to trace diet at different stages of an individual's life by comparing isotope ratios of bone from different gross anatomical sites within the skeleton. In this study we develop this approach further by separating bone of differing mineral densities within one skeletal element, where each density fraction represents a different period of time. Isotope ratios are measured for these fractions. Each density fraction represents a period of bone formation and maturation, where younger (more recently formed) bone is less well-mineralized and therefore less dense than relatively older packets of bone. In an adult, bone is therefore able to partition approximately the last 15 years of life. Bone fractions were recovered by stepped ultracentrifugation in a series of organic solvents of increasing density, and then collagen was recovered by decalcification in dilute acid, and stable carbon isotope ratios ((13)C/(12)C) were measured. Bone density microstructure was checked for bacterial remodelling using backscattered electron imaging in a scanning electron microscope. Our results indicate that the bone density fractionation method is applicable to archaeological material, here extending to a maximum of 5,000 years BP, and that collagen can successfully be extracted from such fractions. The carbon isotope values for bone fractions of different densities patterned out as expected in one modern control bone and in specimens from five archaeological human skeletons, including three precolonial hunter-gatherers and two 18th/19th century individuals. The latter two are known (from previous assessments) to have undergone marked changes in diet during their lifetimes. Postmortem alteration was evident in some of the specimens examined. The bone density fractionation approach has allowed greater resolution of diet than has hitherto been possible and has provided access to the elusive last years and months of an individual's life.  相似文献   

10.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

11.
王玄  江红星  张亚楠 《生态学报》2015,35(16):5556-5569
稳定同位素分析(stable isotope analysis,SIA)自20世纪70年代末引入鸟类生态学领域以来,在研究鸟类食性和营养级结构方面展现了强大的发展潜力和广泛的应用前景。总结了该技术在鸟类食源组成和营养级结构方面研究的前期准备、实验流程、数据分析和研究进展等,重点阐述了其在鸟类保护与管理方面的应用。鉴于稳定同位素在生物体内存在分馏现象,从鸟类不同组织和部位对营养级富集因子、转化周期、同位素印记的差异,提出了完善该方法的建议和应用前景。  相似文献   

12.
13.
刘启龙  程赛赛  陈婷  常亮  高梅香 《生态学报》2023,43(6):2242-2252
土壤动物联结着生态系统地上与地下部分的物质循环和能量流动,对生态系统的结构、功能及过程起着重要的调控作用。地表甲虫作为典型的大型土壤动物,在食物网中占有重要的位置,因此对不同林型地表甲虫的δ13C、δ15N同位素特征及营养关系研究对了解森林土壤动物的食性特征进而保护森林生物多样性是十分必要的。采集了小兴安岭凉水自然保护区6种不同林型的地表甲虫共10科31种,利用稳定同位素技术测定了甲虫中的δ13C、δ15N含量,并分析不同林型内地表甲虫的δ13C、δ15N值及营养级差异。结果表明6、7月份不同林型地表甲虫的δ13C、δ15N值差异显著(P<0.05),其中δ13C值在原始阔叶红松林和次生白桦林显著高于落叶松人工林和阔叶红松择伐林。δ15N值在阔叶红松择伐林显著高于其他5种林型。不同林型地表甲虫的营养级差异显著(P<0.05),林型内各物种营养级差异不显著(P...  相似文献   

14.
Differences in trophic niches among carabid beetles (Coleoptera: Carabidae) co‐occurring on the forest floors of warm temperate forests in central Japan were studied using carbon (δ13C) and nitrogen (δ15N) stable isotope analyses. Different carabid species showed similar δ15N values, which were higher than those of their possible invertebrate prey (herbivores and detritivores) collected from the litter layer, indicating that these species were consumers in the same trophic level. In contrast, δ13C values differed among carabid species, indicating interspecific differences in prey animals. The variation in the δ13C value was larger in summer than in autumn. In summer, δ13C values indicated that some carabids depended highly on either grazing (low δ13C values) or detrital sources (high δ13C values) within the food chain [Chlaenius posticalis Motschulsky and Haplochlaenius costiger (Chaudoir), respectively], although other species with intermediate δ13C values likely depended on both. The latter group of species comprised mostly two dominant genera (Carabus and Synuchus). Although congeners might have similar feeding habits, the stable isotope ratios indicated trophic niche differences between adults of different species and between adults and larvae of the same genus.  相似文献   

15.
A forest-stream trophic link was examined by stable carbon isotope analyses which evaluated the relationship of aquatic insects emerging from a stream to the diets of web-building spiders. Spiders, aquatic and terrestrial prey, and basal resources of forest and stream food webs were collected in a deciduous forest along a Japanese headwater stream during May and July 2001. The 13C analyses suggested that riparian tetragnathid spiders relied on aquatic insects and that the monthly variation of such dependence is partly associated with the seasonal dynamics of aquatic insect abundance in the riparian forest. Similarly, linyphiid spiders in the riparian forest exhibited 13C values similar to aquatic prey in May. However, their 13C values were close to terrestrial prey in both riparian and upland (150m away from the stream) forests during June to July, suggesting the seasonal incorporation of stream-derived carbon into their tissue. In contrast, araneid spiders relied on terrestrial prey in both riparian and upland forests throughout the study period. These isotopic results were consistent with a previous study that reported seasonal variation in the aquatic prey contribution to total web contents for each spider group in this forest, implying that spiders assimilate trapped prey and that aquatic insect flux indeed contributes to the energetics of riparian tetragnathid and linyphiid spiders.  相似文献   

16.
  1. Stable isotope mixing models (SIMMs) are widely used for characterizing wild animal diets. Such models rely upon using accurate trophic discrimination factors (TDFs) to account for the digestion, incorporation, and assimilation of food. Existing methods to calculate TDFs rely on controlled feeding trials that are time-consuming, often impractical for the study taxon, and may not reflect natural variability of TDFs present in wild populations.
  2. We present TDFCAM as an alternative approach to estimating TDFs in wild populations, by using high-precision diet estimates from a secondary methodological source—in this case nest cameras—in lieu of controlled feeding trials, and provide a framework for how and when it should be applied.
  3. In this study, we evaluate the TDFCAM approach in three datasets gathered on wild raptor nestlings (gyrfalcons Falco rusticolus; peregrine falcons Falco perigrinus; common buzzards Buteo buteo) comprising contemporaneous δ13C & δ15N stable isotope data and high-quality nest camera dietary data. We formulate Bayesian SIMMs (BSIMMs) incorporating TDFs from TDFCAM and analyze their agreement with nest camera data, comparing model performance with those based on other relevant TDFs. Additionally, we perform sensitivity analyses to characterize TDFCAM variability, and identify ecological and physiological factors contributing to that variability in wild populations.
  4. Across species and tissue types, BSIMMs incorporating a TDFCAM outperformed any other TDF tested, producing reliable population-level estimates of diet composition. We demonstrate that applying this approach even with a relatively low sample size (n < 10 individuals) produced more accurate estimates of trophic discrimination than a controlled feeding study conducted on the same species. Between-individual variability in TDFCAM estimates for ∆13C & ∆15 N increased with analytical imprecision in the source dietary data (nest cameras) but was also explained by natural variables in the study population (e.g., nestling nutritional/growth status and dietary composition).
  5. TDFCAM is an effective method of estimating trophic discrimination in wild animal populations. Here, we use nest cameras as source dietary data, but this approach is applicable to any high-accuracy method of measuring diet, so long as diet can be monitored over an interval contemporaneous with a tissue's isotopic turnover rate.
  相似文献   

17.
Due to ease of manipulation, metabolic isotope coding of samples for proteomic analysis is typically performed in cell culture, thus preventing an accurate in vivo quantitative analysis, which is only achievable in intact organisms. To address this issue in plant biology, we developed SILIP (stable isotope labeling in planta) using tomato plants (Solanum lycopersicum cv. Rutgers) as a method that allows soil-grown plants to be efficiently labeled using a 14N/15N isotope coding strategy. After 2 months of growth on 14N- and 15N-enriched nitrogen sources, proteins were extracted from four distinct tomato tissues (roots, stems, leaves and flowers), digested, and analyzed by LC/MS/MS (data-dependent acquisition, DDA) and alternating low- and elevated-energy MS scans (data-independent acquisition, MS(E)). Using a derived relationship to generate a theoretical standard curve, the measured ratio of the M (monoisotopic) and M-1 isotopologues of 70 identified 15N-labeled peptides from 16 different proteins indicated that 15N incorporation was almost 99%, which is in excellent agreement with the 99.3% 15N-enriched nitrate used in the soil-based medium. Values for the various tissues ranged from 98.2 +/- 0.3% 15N incorporation in leaves to 98.8 2 +/- 0.2% in stems, demonstrating uniform labeling throughout the plant. In addition, SILIP is compatible with root-knot nematode (Meloidogyne spp.) development, and thus provides a new quantitative proteomics tool to study both plant and plant-microorganism systems.  相似文献   

18.
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.  相似文献   

19.
A systematic dietary investigation during Danish Roman Iron Age (1‐375AD) is conducted by analyzing stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in the collagen of human and animal bone. The human sample comprises 77 individuals from 10 burial sites. In addition 31 samples of mammals and fish were analyzed from same geographical area. The investigation characterizes the human diet among different social groupings and analyses dietary differences present between sex, age, and site phase groups. Diachronically, the study investigates the Roman influences that had an effect on social structure and subsistence economy in both the Early and Late Period. Geographically the locations are both inland and coastal. The isotopic data indicate extremely uniform diet both between and within population groups from Early and Late Roman periods and the data are consistent throughout the Roman Iron Age. Protein consumption was dominated by terrestrial animals with no differences among social status, age, sex, or time period, while terrestrial plant protein only seems to have contributed little in the diet. Furthermore, the consumption of marine or aquatic resources does not seem to have been important, even among the individuals living next to the coast. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
1. Carbon (δ13C) and nitrogen (δ15N) stable isotope ratios of termites (Isoptera) were examined in Darwin, northern Australia. It is suggested that the stable isotope technique, together with phylogenetics, is a useful tool to understand the evolution of functional groups in detritivores.
2. A high δ15N value was observed in the Termes-Capritermes branch of the subfamily Termitinae and the genus Amitermes , two distinct taxonomic groups that evolved from wood-feeding to soil-feeding in Australia. Among eight Termes-Capritermes branch species, only two species ( Xylochomitermes melvillensis and Ephelotermes melachoma ) were discernible as wood/soil interface feeders, the remaining six species analysed were soil-feeders, where the diet preference was identified by using δ15N of workers.
3. The Termes-Capritermes group in Australia contains both wood/soil interface feeders and soil-feeders, whereas wood/soil interface feeders in Cameroon are from the Termes-Capritermes branch while soil-feeders are from Cubitermes group. The result confirmed that soil-feeding forms evolved both in Australia and Africa, but from different phylogenetic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号