首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Equilibrium binding studies of prothrombinase complex formation were undertaken using phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine (PCPS), factor Va, and factor Xa modified with dansyl glutamylglycinylarginyl chloromethyl ketone (DEGR.Xa). The interaction between the Va.PCPS and DEGR.Xa.PCPS binary complexes was experimentally isolated using saturating concentrations of PCPS. Fluorescence titrations indicated that the membrane-bound proteins interact tightly (Kd approximately 10(-9) M) with a stoichiometry of 1 mol of Va bound/mol of DEGR.Xa at saturation. Complex formation was also investigated by kinetic studies of prothrombin activation using unmodified factor Xa. The kinetic studies yielded a Kd approximately 10(-9) M, which was independent of the concentration of prothrombin in the range of 0.5-5.0 microM. Fluorescence studies of complex assembly at limiting PCPS concentrations provided evidence for an altered DEGR.Xa-PCPS interaction when the enzyme was assembled into the complex. The data suggest that although both proteins are associated with PCPS when complexed with each other, the presence of factor Va on the membrane surface increases the affinity for the Xa-PCPS interaction by an estimated 100-fold. Prothrombinase complex assembly therefore proceeds independently of the availability of substrate and is stabilized by protein-protein and protein-phospholipid interactions. Linkage between the two protein-membrane combination events leads to the further stabilization of the complex on the vesicle surface.  相似文献   

2.
The larger subunit of blood coagulation factor Va was covalently labeled with iodoacetamido derivatives of fluorescein and rhodamine without loss of functional activity, as measured by either the one-stage clotting assay or the ability to accelerate prothrombin activation in a purified system. The spectral properties of the dyes were not altered by the presence or absence of the smaller subunit of factor Va, Ca2+, prothrombin, factor Xa, or phosphatidylcholine/phosphatidylserine (PC/PS, 4:1) vesicles. When fluorescein-labeled protein (factor VaF) was titrated with PC/PS vesicles containing either octadecylrhodamine or 5-(N-hexadecanoylamino)eosin, fluorescence energy transfer was observed between the protein-bound donor dyes and the acceptor dyes at the outer surface of the phospholipid bilayer. The extent of energy transfer correlated directly with the extent of protein binding to the vesicles monitored by light scattering. The distance of closest approach between the fluorescein on factor Va and the bilayer surface averaged 90 A for the two different acceptors. Association of factor VaF with factor Xa on the phospholipid surface reduced this separation by 7 A, but association with prothrombin did not alter the distance between the labeled domain on factor VaF and the surface. The efficiency of diffusion-enhanced energy transfer between rhodamine-labeled factor Va and terbium dipicolinate entrapped inside PC/PS vesicles was less than 0.01, consistent with the location of the dye far above the inner surface of the vesicle. Thus, a domain of membrane-bound factor Va is located a minimum of 90 A above the phospholipid surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mechanism of inactivation of bovine factor Va by plasmin was studied in the presence and absence of phospholipid vesicles (PCPS vesicles). Following 60-min incubation with plasmin (4 nm) membrane-bound factor Va (400 nm) is completely inactive, whereas in the absence of phospholipid vesicles following a 1-h incubation period, the cofactor retains 90% of its initial cofactor activity. Amino acid sequencing of the fragments deriving from cleavage of factor Va by plasmin demonstrated that while both chains of factor Va are cleaved by plasmin, only cleavage of the heavy chain correlates with inactivation of the cofactor. In the presence of a membrane surface the heavy chain of the bovine cofactor is first cleaved at Arg(348) to generate a fragment of M(r) 47,000 containing the NH(2)-terminal part of the cofactor (amino acid residues 1-348) and a M(r) 42,000 fragment (amino acid residues 349-713). This cleavage is associated with minimal loss in cofactor activity. Complete loss of activity of the membrane-bound cofactor coincides with three cleavages at the COOH-terminal portion of the M(r) 47,000 fragment: Lys(309), Lys(310), and Arg(313). These cleavages result in the release of the COOH terminus of the molecule and the production of a M(r) 40,000 fragment containing the NH(2)-terminal portion of the factor Va molecule. Factor Va was treated with plasmin in the absence of phospholipid vesicles followed by the addition of PCPS vesicles and activated protein C (APC). A rapid inactivation of the cofactor was observed as a result of cleavage of the M(r) 47,000 fragment at Arg(306) by APC and appearance of a M(r) 39,000 fragment. These data suggest a critical role of the amino acid sequence 307-348 of factor Va. A 42-amino acid peptide encompassing the region 307-348 of human factor Va (N42R) was found to be a good inhibitor of factor Va clotting activity with an IC(50) of approximately 1.3 microm. These data suggest that plasmin is a potent inactivator of factor Va and that region 307-348 of the cofactor plays a critical role in cofactor function and may be responsible for the interaction of the cofactor with factor Xa and/or prothrombin.  相似文献   

4.
The inactivation of Factor Va by plasmin was studied in the presence and absence of phospholipid vesicles and calcium ions. The cleavage patterns of bovine Factor Va and its isolated subunits were analyzed using polyacrylamide gel electrophoresis, and the progress of inactivation was monitored by clotting assays and measurements of prothrombin activation using 5-dimethylaminonaphthalene-1-sulfonylarginine-N-(3-ethyl-1,5-penta nediyl)amide. In addition, the ability of prothrombin and Factor Xa to protect Factor Va from inactivation by human plasmin was examined. The data presented indicate that the cofactor Factor Va is inactivated rapidly upon its interaction with human plasmin. The rate of inactivation is significantly enhanced in the presence of phospholipid vesicles, suggesting that the inactivation process is a membrane-bound phenomenon. The isolated D component (heavy chain of factor Va) was found to be slowly degraded by human plasmin, giving rise to cleavage products different from those obtained with activated protein C and Factor Xa. However, the 48- and 30-kDa fragments obtained from human plasmin degradation of component E (light chain of Factor Va) appear to be similar to those obtained following the proteolysis of the same subunit by activated protein C and Factor Xa.  相似文献   

5.
Phosphatidylserine (PS) plays a crucial role, in the conversion of prothrombin into thrombin by the protease, factor Xa. Physiologically, the conversion occurs in the prothrombinase complex. The question of how water-soluble proteins that normally circulate in plasma bind remains to be unambiguously determined. We previously found that the amphitropic proteins (prothrombin, factors V and Va) penetrate into phospholipid layers. AC polarography has allowed the detection for the first time of insertion of factor Xa into condensed monolayers containing phosphatidylserine (PS) and phosphatidylcholine (PC) either 100% PS or 25% PS in the presence of Ca2+. This observation demonstrates that part of factor Xa can cross the phospholipid polar headgroup/hydrocarbon chain interface. In parallel experiments, radioactive surface measurements permitted measuring binding of tritium-labeled factor Xa onto a PS monolayer and calculate an association constant, 6x10(6) M(-1). Penetration of factor Xa into PS-containing vesicles was investigated also using photoactivable 5-[125I]iodonaphthalene-1-azide, which binds selectively to the lipid embedded domains of the protein. These experiments suggest that Factor Xa penetrates preferentially by its heavy chain, an alternative mode of binding to the commonly accepted binding via its Gla domain. Interaction of factor Xa with PS vesicles also changes its apparent K(m) for S 2222.  相似文献   

6.
Two different lipophilic photoreagents, [3H]adamantane diazirine and 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID), have been utilized to examine the interactions of blood coagulation factor Va with calcium, prothrombin, factor Xa, and, in particular, phospholipid vesicles. With each of these structurally dissimilar reagents, the extent of photolabeling of factor Va was greater when the protein was bound to a membrane surface than when it was free in solution. Specifically, the covalent photoreaction with Vl, the smaller subunit of factor Va, was 2-fold higher in the presence of phosphatidylcholine/phosphatidylserine (PC/PS, 3:1) vesicles, to which factor Va binds, than in the presence of 100% PC vesicles, to which the protein does not bind. However, the magnitude of the PC/PS-dependent photolabeling was much less than has been observed previously with integral membrane proteins. It therefore appears that the binding of factor Va to the membrane surface exposes Vl to the lipid core of the bilayer, but that only a small portion of the Vl polypeptide is exposed to, or embedded in, the bilayer core. Addition of either prothrombin or active-site-blocked factor Xa to PC/PS-bound factor Va had little effect on the photolabeling of Vl with TID, but reduced substantially the covalent labeling of Vh, the larger subunit of factor Va. This indicates that prothrombin and factor Xa each cover nonpolar surfaces on Vh when the macromolecules associate on the PC/PS surface. It therefore seems likely that the formation of the prothrombinase complex involves a direct interaction between Vh and factor Xa and between Vh and prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Coagulation factor Va is a cofactor which combines with the serine protease factor Xa on a phospholipid surface to form the prothrombinase complex. The phospholipid-binding domain of bovine factor Va has been reported to be located on the light chain of the molecule and more precisely on a fragment of Mr = 30,000 which is obtained after digestion of factor Va light chain by factor Xa. This proteolytic fragment is located in the NH2-terminal part of factor Va light chain (residues 1564-1765). In order to further characterize the lipid-binding domain of bovine factor Va, isolated bovine light chain was preincubated with synthetic phospholipid vesicles (75% phosphatidylcholine, 25% phosphatidylserine) and digested with trypsin, chymotrypsin, and elastase. Two peptide regions protected from proteolytic cleavage were identified and characterized from each proteolytic digestion. A comparison of the NH2-terminal sequence and amino acid composition of the two tryptic peptides with the deduced sequence of human factor V indicates a match with residues 1657-1791 of the light chain of human factor V for one peptide and residues 1546-1656 for the other peptide. When chymotrypsin or elastase were used for digestion, the NH2-terminal sequence of one peptide showed a match with residues 1667-1797 of the light chain, while the other peptide presented an NH2-terminal sequence identical with the previously described for the bovine factor Va light chain. When these peptides were assayed for direct binding to phospholipid vesicles, only the tryptic and the chymotryptic peptides covering the middle region of the A3 domain of the bovine factor Va light chain demonstrated an ability to interact with phospholipid vesicles. Thus, knowing that the factor Xa cleavage site on the factor Va light chain is located between residues 1765 and 1766 of the light chain this lipid-binding region of the bovine factor Va is further localized to amino acid residues 1667-1765.  相似文献   

8.
The binding of bovine Factor V, isolated Factor Va, and isolated activation intermediates to single bilayer phospholipid vesicles was studied by light scattering. The vesicles composed of 25% phosphatidylserine and 75% phosphatidylcholine had a mean radius of approximately 163 A as determined by quasi-elastic light scattering. When these vesicles were saturated with Factor V, the radii increased by approximately 120 A in both 0.15 and 1 M NaCl. At saturation, about 35 molecules of Factor V and 141 molecules of Factor Va were bound to each vesicle. Studies of the binding of Factor V and Factor Va at various ionic strengths showed little change in either Kd or n, suggesting that the binding is not electrostatic. The dissociation constants (Kd) and the lipid to protein ratios at saturation, moles/mol (n), obtained by relative light scattering intensities were: Factor V (Kd = 4.3 X 10(-8) M, n = 214); isolated Factor Va (Kd = 1.7 X 10(-7) M, n = 57); component B, Mr = 205,000 (Kd = 1.8 X 10(-7) M, n = 140); component C, Mr = 150,000 (Kd = 7.0 X 10(-7) M, n = 136); component D, Mr = 94,000 (no binding could be demonstrated); component E, Mr = 74,000 (Kd = 3.8 X 10(-7) M, n = 42). The results presented here indicate that the lower Kd exhibited by Factor V compared to Factor Va (components D and E) is primarily due to the interaction present within the component C portion of the molecule which is destroyed when component C is further cleaved to give component D. The interactions responsible for the binding of Factor Va are expressed in component E as well as in its precursor peptide component B. Dissociation of components D and E by the addition of EDTA indicate that component E alone is responsible for the interaction of bovine Factor Va with phospholipid.  相似文献   

9.
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule.  相似文献   

10.
Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (K(d) = ~10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60-70% functional prothrombinase complex at saturating factor Va concentrations. Although reduced interfacial packing does contribute to factor Va binding in the absence of PS, it does not correlate with the enhanced activity of the Xa-Va complex assembled on PE-containing membranes. Instead, specific protein-PE interactions appear to contribute to the effects of PE. In support of this, soluble C6PE binds to recombinant factor Va(2) (K(d) = ~6.5 μm) and to factor Xa (K(d) = ~91 μm). C6PE and C6PS binding sites of factor Xa are specific, distinct, and linked, because binding of one lipid enhances the binding and activity effects of the other. C6PE triggers assembly (K(d)(app) = ~40 nm) of a partially active prothrombinase complex between factor Xa and factor Va(2), compared with K(d)(app) for C6PS ~2 nm. These findings provide new insights into the possible synergistic roles of platelet PE and PS in regulating thrombin formation, particularly when exposed membrane PS may be limiting.  相似文献   

11.
The effect of membrane composition on the hemostatic balance   总被引:6,自引:0,他引:6  
Smirnov MD  Ford DA  Esmon CT  Esmon NL 《Biochemistry》1999,38(12):3591-3598
The phospholipid composition requirements for optimal prothrombin activation and factor Va inactivation by activated protein C (APC) anticoagulant were examined. Vesicles composed of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) supported factor Va inactivation relatively well. However, optimal factor Va inactivation still required relatively high concentrations of phosphatidylserine (PS). In addition, at a fixed concentration of phospholipid, PS, and APC, vesicles devoid of PE never attained a rate of factor Va inactivation achievable with vesicles containing PE. Polyunsaturation of any vesicle component also contributed significantly to APC inactivation of factor Va. Thus, PE makes an important contribution to factor Va inactivation that cannot be mimicked by PS. In the absence of polyunsaturation in the other membrane constituents, this contribution was dependent upon the presence of both the PE headgroup per se and unsaturation of the 1,2 fatty acids. Although PE did not affect prothrombin activation rates at optimal PS concentrations, PE reduced the requirement for PS approximately 10-fold. The Km(app) for prothrombin and the Kd(app) for factor Xa-factor Va decreased as a function of increasing PS concentration, reaching optimal values at 10-15% PS in the absence of PE but only 1% PS in the presence of PE. Fatty acid polyunsaturation had minimal effects. A lupus anticoagulant immunoglobulin was more inhibitory to both prothrombinase and factor Va inactivation in the presence of PE. The degree of inhibition of APC was significantly greater and much more dependent on the phospholipid composition than that of prothrombinase. Thus, subtle changes in the phospholipid composition of cells may control procoagulant and anticoagulant reactions differentially under both normal and pathological conditions.  相似文献   

12.
The binding of activated protein C to factors V and Va   总被引:8,自引:0,他引:8  
Activated protein C has been derivatized with the active site-directed fluorophore 2-(dimethylamino)-6-naphthalenesulfonylglutamylglycylarginyl chloromethyl ketone (2,6-DEGR-APC). Covalently modified activated protein C has been used to investigate the binding interactions of the protein to factors V and Va in the presence of phospholipid vesicles. The fluorescence polarization of the 6-dimethylaminonaphthalene-2-sulfonyl moiety increased saturably with increasing phospholipid concentrations in the presence or absence of factor V or Va. Differences in the limiting polarization values indicated distinguishable differences in the interactions between 2,6-DEGR-APC and phospholipid in the presence of factor V or Va. The dissociation constant calculated for the 2,6-DEGR-APC/phospholipid interaction (7.3 X 10(-8) M) was not significantly altered by factor V but was decreased to 7 X 10(-9) M in the presence of factor Va. The interaction between 2,6-DEGR-APC and factor V or Va was characterized by a 1:1 stoichiometry. The binding of 2,6-DEGR-APC to factor V or Va in the presence of phospholipid could be reduced in a competitive manner by diisopropylphosphofluoridate-treated activated protein C. An analysis of the displacement curves indicated that the binding of 2,6-DEGR-APC was indistinguishable from the binding of diisopropylphosphofluoridate-treated activated protein C. The interaction between 2,6-DEGR-APC and phospholipid-bound factor Va was further examined using the isolated subunits of factor Va. Fluorescence polarization changes observed with component E of Va (light chain) closely corresponded with the changes observed with factor Va, whereas isolated component D (heavy chain) had little influence on the binding of 2,6-DEGR-APC to phospholipid vesicles. The data presented are consistent with the interpretation that component E of factor Va contains a binding site for activated protein C.  相似文献   

13.
Proteolytic alterations of factor Va bound to platelets   总被引:5,自引:0,他引:5  
The coagulation protein Factor Va forms the receptor for the serine protease Factor Xa at the platelet surface. This membrane-bound complex of Factor Va and Factor Xa plus calcium constitutes the enzymatic complex prothrombinase, which effects the conversion of prothrombin to the clotting enzyme, thrombin. Studies were undertaken to investigate the proteolytic events accompanying the inactivation of platelet-bound Factor Va by activated protein C as well as the ability of Factor Xa to protect Factor Va from activated protein C inactivation. During the course of these studies, observations were made which indicated that Factor Va was also cleaved by both a platelet-associated protease, as well as Factor Xa. When Factor Va was incubated with washed platelets, electrophoresis and autoradiography of solubilized platelet pellets indicated that three Factor Va peptides were associated with the platelet: component D (Mr = 94,000), component E (Mr = 74,000), and a 90,000-dalton peptide (component D') which appeared with time as the result of a platelet-associated protease cleavage of component D. The Factor Va peptides bound to platelets were proteolytically inactivated by activated protein C, resulting in five peptide products, all of which remained associated with the platelet-membrane surface. Factor Va was protected from activated protein C proteolysis by complex formation with Factor Xa or active site-blocked Factor Xa. However, active Factor Xa cleaved platelet-bound Factor Va to peptide products which also remained associated with the platelet. Whereas activated protein C rapidly cleaved components D and D' with secondary cleavages occurring in component E, Factor Xa rapidly cleaved component E with secondary cleavages occurring in components D and D'. The Factor Xa-cleaved Factor Va is catalytically functional. To determine whether cleavage was necessary for function, prothrombin conversion reaction mixtures were monitored for thrombin formation and Factor Va cleavage with time in a defined phospholipid vesicle model system. The results indicated that Factor Xa cleavage of Factor Va is not essential for Factor Va activity but may promote its ability to function in the prothrombinase complex.  相似文献   

14.
Regulatory exosite I of thrombin is present on prothrombin in a precursor state (proexosite I) that specifically binds the Tyr(63)-sulfated peptide, hirudin(54-65) (Hir(54-65)(SO(3)(-))) and the nonsulfated analog. The role of proexosite I in the mechanism of factor Va acceleration of prothrombin activation was investigated in kinetic studies of the effects of peptide binding. The initial rate of human prothrombin activation by factor Xa was inhibited by the peptides in the presence of factor Va but not in the absence of the cofactor. Factor Xa and factor Va did not bind the peptide with significant affinity compared with prothrombin. Maximum inhibition reduced the factor Va-accelerated rate to a level indistinguishable from the rate in the absence of the cofactor. The effect of Hir(54-65)(SO(3)(-)) on the kinetics of prothrombin activation obeyed a model in which binding of the peptide to proexosite I prevented productive prothrombin interactions with the factor Xa-factor Va complex. Comparison of human and bovine prothrombin as substrates demonstrated a similar correlation between peptide binding and inhibition of factor Va acceleration. Inhibition of prothrombin activation by hirudin peptides was opposed by assembly on phospholipid vesicles of the membrane-bound factor Xa-factor-Va-prothrombin complex. Factor Va interactions of human and bovine prothrombin activation are concluded to share a common mechanism in which proexosite I participates in productive interactions of prothrombin as the substrate of the factor Xa-factor Va complex, possibly by directly mediating productive prothrombin-factor Va binding.  相似文献   

15.
Interactions between factor Va and membrane phosphatidylserine (PS) regulate activity of the prothrombinase complex. Two solvent-exposed hydrophobic residues located in the C2 domain, Trp(2063) and Trp(2064), have been proposed to contribute to factor Va membrane interactions by insertion into the hydrophobic membrane bilayer. However, the prothrombinase activity of rHFVa W(2063, 2064)A was found to be significantly impaired only at low concentrations of PS (5 mol %). In this study, we find that 10-fold higher concentrations of mutant factor Va are required for half-maximal prothrombinase activity on membranes containing 25% PS. The ability of the mutant factor Va to interact with factor Xa on a membrane was also impaired since 4-fold higher concentrations of factor Xa were required for half-maximal prothrombinase activity. The interaction of factor Va with 25% PS membranes was also characterized using fluorescence energy transfer and surface plasmon resonance. We found that the affinity of mutant factor Va for membranes containing 25% PS was reduced at least 400-fold with a K(d) > 10(-7) M. The binding of mutant factor Va to 25% PS membranes was markedly enhanced in the presence of factor Xa, indicating stabilization of the factor Va-factor Xa-membrane complex. Our findings indicate that Trp(2063) and Trp(2064) play a critical role in the high-affinity binding of factor Va to PS membranes. It remains to be determined whether occupancy of this PS binding site in factor Va is also required for high-affinity binding to factor Xa.  相似文献   

16.
The kinetic parameters of bovine prothrombin activation by factor Xa were determined in the absence and presence of factor Va as a function of the phospholipid concentration and composition. In the absence of factor Va, the Km for prothrombin increases proportionally with the phospholipid concentration and correlates well with the affinity of prothrombin for the different membranes. Phospholipid vesicles with a high affinity for prothrombin yield low Km values compared to membranes with less favorable binding parameters. At limited phospholipid concentrations, the Vmax of prothrombin activation correlates with the binding affinity of factor Xa for the various phospholipid vesicles. Membranes with a high affinity for factor Xa have high Vmax values, while for membranes with a low affinity a low Vmax is observed. Extrapolation of double-reciprocal plots of 1/Vmax vs. 1/[phospholipid] to infinite phospholipid concentrations, a condition at which all factor Xa would participate in prothrombin activation, yields a kcat of 2-4 min-1 independent of the type and amount of acidic phospholipid present in the vesicles. Also, in the presence of factor Va the Km for prothrombin varies proportionally with the phospholipid concentration. There is, however, no correlation between the binding parameters and the Km. Factor Va drastically lowers the Km for prothrombin for vesicles that have a low affinity for prothrombin. Vesicles composed of 20 mol % phosphatidylglycerol and 80 mol % phosphatidylcholine have a Km of 0.04 microM when factor Va is present, compared to 2.2 microM determined in the absence of factor Va.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

18.
The binding interaction of bone Gla protein (BGP), or osteocalcin, to phospholipid vesicles in the presence of calcium has been investigated. Two separate indirect methodologies involving displacement of pyrene-modified Factor Va bound to phospholipid vesicles, and competition with several coagulation proteins in a prothrombin activation assay were performed. Titration of BGP into a cuvette containing phospholipid vesicles (75:25, L-alpha-phosphatidylcholine/L-alpha-phosphatidylserine (PCPS] saturated with pyrene-modified Factor Va resulted in a systematic decrease in steady-state anisotropy, suggesting competition for membrane binding sites with pyrene-modified Factor Va. BGP was also found to inhibit thrombin generation in the prothrombin activation assay. Approximately 50% inhibition was observed at 3 microM BGP under phospholipid-limiting (0.5 microM PCPS) concentrations. No inhibition was observed under phospholipid excess (30 microM PCPS) concentrations. Direct measurement of phospholipid binding was measured using equilibrium gel filtration. Elution profiles using fixed lipid (3.4 mumol of PCPS) and varying BGP concentrations (1-17 microM) in the presence of 3 mM CaCl2 showed a BGP-phospholipid association. Quantitation of determined isotherm yielded a dissociation constant of 6 +/- 1 microM with a stoichiometry of 102 +/- 9 BGP molecules/vesicle at saturation (35 PCPS lipids/BGP) in the presence of 3 mM CaCl2. These results support the hypothesis that protein gamma-carboxylation events are coincident with membrane binding potential.  相似文献   

19.
We have demonstrated that amino acids E (323), Y (324), E (330), and V (331) from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332-336 contains residues that are important for cofactor function. Using overlapping peptides, we identified amino acids D (334) and Y (335) as contributors to cofactor activity. We constructed recombinant factor V molecules with the mutations D (334) --> K and Y (335) --> F (factor V (KF)) and D (334) --> A and Y (335) --> A (factor V (AA)). Kinetic studies showed that while factor Va (KF) and factor Va (AA) had a K D for factor Xa similar to the K D observed for wild-type factor Va (factor Va (WT)), the clotting activities of the mutant molecules were impaired and the k cat of prothrombinase assembled with factor Va (KF) and factor Va (AA) was reduced. The second-order rate constant of prothrombinase assembled with factor Va (KF) or factor Va (AA) for prothrombin activation was approximately 10-fold lower than the second-order rate constant for the same reaction catalyzed by prothrombinase assembled with factor Va (WT). We also created quadruple mutants combining mutations in the amino acid region 334-335 with mutations at the previously identified amino acids that are important for factor Xa binding (i.e., E (323)Y (324) and E (330)V (331)). Prothrombinase assembled with the quadruple mutant molecules displayed a second-order rate constant up to 400-fold lower than the values obtained with prothrombinase assembled with factor Va (WT). The data demonstrate that amino acid region 334-335 is required for the rearrangement of enzyme and substrate necessary for efficient catalysis of prothrombin by prothrombinase.  相似文献   

20.
Interaction of prothrombin with factor Va-phospholipid complexes   总被引:1,自引:0,他引:1  
The effects of factor Va and the phospholipid-binding fragment of factor Va [factor Va light chain (LC), Mr 80000] on the binding of prothrombin, factor X, and factor Xa to phospholipid vesicles are reported. Equilibrium binding experiments were performed that utilized large-volume vesicles, which can be removed from the bulk solution by centrifugation. Factor Va decreased the dissociation constant of the prothrombin-phospholipid complex 50-fold, from 2.0 X 10(-7) M to 4.0 X 10(-9) M. For the factor X-phospholipid complex the decrease was 60-fold (1.8 X 10(-7) M to 3.0 X 10(-9) M) and for factor Xa, 160-fold (1.6 X 10(-7) M to 1.0 X 10(-9) M). The ratios of moles of protein bound to moles of total added factor Va at saturation of phospholipid-bound factor Va indicate an 1:1 stoichiometric complex of either factor Xa, factor X, or prothrombin and phospholipid-bound factor Va. In the presence of factor Va LC, the dissociation constants of factor Xa- and prothrombin-phospholipid complexes were increased, while the maximal protein-binding capacities of the vesicles were not affected by factor Va LC. The data suggest a competitive interaction between factor Xa and factor Va LC binding as well as between prothrombin and factor Va LC binding at the phospholipid surface. From this, it is concluded that the phospholipid-binding fragment of factor Va alone does not serve as the binding site for interactions of factor Xa and prothrombin with factor Va.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号