首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.  相似文献   

3.
Thirteen Lactobacillus strains isolated from the gastrointestinal microbiome of people from the territory of the former Soviet Union have been studied for resistance to 15 antibiotics of different nature, namely, penicillins, aminoglycosides, macrolides, lincosamides, tetracyclines, chloramphenicol, and rifampicin. The strains included four strains of L. plantarum, four of L. helveticus, three of L. casei/paracasei, one of L. rhamnosus, and one of L. fermentum. All strains showed relative sensitivity to ampicillin, chloramphenicol, rifampicin, roxithromycin, erythromycin, and azithromycin, while none of them were sensitive to all tested antibiotics. L. plantarum strains had the broadest resistance spectra: one strain was resistant to tetracycline and three aminoglycosides and three strains were resistant to tetracycline and five aminoglycosides; one strain demonstrated high resistance to clindamycin and two strains to lincomycin. At the same time, two L. plantarum strains demonstrated resistance to benzylpenicillin coupled with sensitivity to ampicillin, another β-lactam antibiotic. Such resistance was clearly not related to the β-lactamase activity and could be explained by a specific mutation in one of the penicillin-binding proteins of the cell wall. Strains of L. helveticus, L. casei/paracasei, L. rhamnosus, and L. fermentum exhibited cross resistance to two to five different aminoglycosides. A PCR test of the resistance determinants for the widely clinically used antibiotics, tetracycline, chloramphenicol, and erythromycin revealed the presence of the tetM gene of conjugative transposon in L. casei/paracasei and two L. helveticus strains. Nucleotide sequence analysis of the amplified tetM fragments demonstrated their high homology with the tetM genes of Enterococcus faecalis and Streptococcus pneumoniae. The strains carrying tetM were tested for the genes of replication and conjugative transfer of plasmids in lactic acid bacteria. The results indicated that these strains contain genes identical or highly homologous to the rep and trsK genes of the plca36 plasmid and rep gene of the pLH1 and pLJ1 plasmids of lactic acid bacteria. The tetM gene is probably not expressed in strains sensitive to the corresponding antibiotic. However, the investigated lactobacilli cannot be directly used as probiotics, as they may serve as a source of genes for antibiotic resistance in the human microbiome.  相似文献   

4.
Ritchie ML  Romanuk TN 《PloS one》2012,7(4):e34938

Background

Meta-analyses on the effects of probiotics on specific gastrointestinal diseases have generally shown positive effects on disease prevention and treatment; however, the relative efficacy of probiotic use for treatment and prevention across different gastrointestinal diseases, with differing etiology and mechanisms of action, has not been addressed.

Methods/Principal Findings

We included randomized controlled trials in humans that used a specified probiotic in the treatment or prevention of Pouchitis, Infectious diarrhea, Irritable Bowel Syndrome, Helicobacter pylori, Clostridium difficile Disease, Antibiotic Associated Diarrhea, Traveler''s Diarrhea, or Necrotizing Enterocolitis. Random effects models were used to evaluate efficacy as pooled relative risks across the eight diseases as well as across probiotic species, single vs. multiple species, patient ages, dosages, and length of treatment. Probiotics had a positive significant effect across all eight gastrointestinal diseases with a relative risk of 0.58 (95% (CI) 0.51–0.65). Six of the eight diseases: Pouchitis, Infectious diarrhea, Irritable Bowel Syndrome, Helicobacter pylori, Clostridium difficile Disease, and Antibiotic Associated Diarrhea, showed positive significant effects. Traveler''s Diarrhea and Necrotizing Enterocolitis did not show significant effects of probiotcs. Of the 11 species and species mixtures, all showed positive significant effects except for Lactobacillus acidophilus, Lactobacillus plantarum, and Bifidobacterium infantis. Across all diseases and probiotic species, positive significant effects of probiotics were observed for all age groups, single vs. multiple species, and treatment lengths.

Conclusions/Significance

Probiotics are generally beneficial in treatment and prevention of gastrointestinal diseases. Efficacy was not observed for Traveler''s Diarrhea or Necrotizing Enterocolitis or for the probiotic species L. acidophilus, L. plantarum, and B. infantis. When choosing to use probiotics in the treatment or prevention of gastrointestinal disease, the type of disease and probiotic species (strain) are the most important factors to take into consideration.  相似文献   

5.
6.
【目的】葡萄汁有孢汉逊酵母Hanseniaspora uvarum是存在于橘小实蝇Bactrocera dorsalis肠道的共生有益真菌,本研究通过改变饲料中酵母浸粉、麦麸和H. uvarum菌液的配比,筛选获得最优的橘小实蝇幼虫的饲料配方,为橘小实蝇规模化扩繁提供理论基础。【方法】利用响应面法(Responsesurface methodology,RSM)设计人工饲料中酵母浸粉、麦麸与H.uvarum的配比,统计取食不同配比的饲料后橘小实蝇幼虫的发育历期、蛹重和成虫羽化率,并计算每种饲料配方的成本;根据实验结果进行配方优化,预测取食最优配方饲料幼虫的发育历期、蛹重、成虫羽化率以及成本节约的百分比,同时,采用预测的最优饲料配方饲喂幼虫,统计取食最优饲料配方幼虫的发育历期、蛹重以及成虫羽化率,验证优化模型下的预测值与试验结果的相符性。【结果】饲料中酵母浸粉、麦麸和H.uvarum成分之间的拮抗或协同作用显著影响幼虫的发育历期、蛹重和成虫羽化率(P <0.000 1)。在饲料中添加H. uvarum菌液,可以减少酵母浸粉的添加量,并降低饲养成本。通过响应面法模型预测,获得最优的橘小实蝇饲料配方比例:每份人工饲料(375 g)包括酵母浸粉3.13 g、麦麸87.45 g、H. uvarum菌液4.42 g、玉米粉40 g、蔗糖40 g及水200mL。与传统饲料费用相比,每份人工饲料可节省成本2.35元,三组分(酵母浸粉、麦麸和H.uvarum菌液)的成本节约百分比为74.35%。采用最优饲料配方饲喂的幼虫发育历期为8.76 d,比预测值缩短了0.8 d,蛹重为13.85mg,羽化率为93.76%,与预测值没有显著性差异。【结论】响应面法设计优化饲料配方具有一定的可靠性,葡萄汁有孢汉逊酵母H. uvarum在橘小实蝇的规模化扩繁中具有一定的应用潜力。  相似文献   

7.
The nonpathogenic, mutualistic bacteria of the mammalian gastrointestinal tract provide a number of benefits to the host. Recent reports have shown how the aggregate genomes of gastrointestinal bacteria provide novel benefits by functioning as the third major genome in mammals along with the nuclear and mitochondrial genomes. Consequently, efforts are underway to elucidate the complexity of the organisms comprising the unique ecosystem of the gastrointestinal tract, as well as those associated with other epidermal surfaces. The current knowledge of the gastrointestinal microbiome, its relationship to human health and disease with a particular focus on mammalian physiology, and efforts to alter its composition as a novel therapeutic approach are reviewed.  相似文献   

8.
9.
10.
Adherence capacities of oral lactobacilli for potential probiotic purposes   总被引:2,自引:0,他引:2  
Samot J  Lebreton J  Badet C 《Anaerobe》2011,17(2):69-72
The most abundantly used probiotic strains come from the genus Lactobacillus and only a few studies have investigated their role in oral health. Even if a positive correlation has been established between the saliva Lactobacillus count and dental caries, this genus is generally recognized as safe (GRAS). Moreover, lactobacilli could in some cases play a beneficial role by inhibiting the growth of some oral pathogenic bacteria. This activity could justify their use as probiotic. To establish the potential health benefit of probiotic candidates, appropriate in?vitro tests are required, particularly on their adhesive capacity. The aim of this work was to investigate the adhesive properties and surface characteristics of 70 oral lactobacilli that could be used as probiotics for oral health. For this, three methods were used: biofilm formation on a glass surface and on saliva-coated hydroxyapatite discs and the microbial adhesion to solvent method. The results of the biofilm formed on glass surface showed 13 strains with an adhesion score equal to or higher than 3. 57/70 (81%) of the tested lactobacilli did not form any biofilm on glass surfaces. All of the 13 strains formed biofilms on HA discs. Among these 13 strains, 10/13 (77%) showed low surface hydrophobicity (0-35%) and 3/13 (23%) showed medium hydrophobicity (36-70%). Some of the selected strains showed potentially useful adhesive capacity. This work paves the way for the selection of probiotics that could be used for oral health purposes with the aim to reduce carious risk.  相似文献   

11.
模拟人体胃肠道环境筛选益生乳杆菌   总被引:6,自引:1,他引:6  
【目的】筛选具有益生特性的乳杆菌作为保健型酸奶的候选菌株。【方法】从健康人肠道和奶豆腐中分离筛选出耐受人工胃液的乳杆菌,对其进行体外益生特性(人工胃肠液耐受性、胆盐耐受性、抑菌活性及胆固醇降解能力)研究。【结果】从在乳杆菌分离培养基上有溶钙圈的41株菌株中筛选出5株耐酸、耐人工胃液较强的菌株,经16S rR NA基因测序鉴定,其中3株为乳杆菌,分别命名为植物乳杆菌Lp MT-3、植物乳杆菌Lp MT-5和唾液乳杆菌LsA F-7。在人工胃液中3株菌的耐受力均强于商品化的对照菌株LGG(鼠李糖乳杆菌GG);转入肠液4 h后直至26 h,Lp MT-5存活率基本稳定在45%左右,仅次于LGG。胆盐浓度为0.10%时,3株乳杆菌的耐胆盐能力均强于LGG;胆盐浓度为0.20%时,Lp MT-3和LsA F-7仍能存活。3株乳杆菌均具有抑菌活性,对粪肠球菌的抑制最明显,其次是金黄色葡萄球菌,对大肠杆菌、沙门氏菌的抑制作用较差。3株乳杆菌对胆固醇的清除效力依次为Lp MT-3LpM T-5Ls AF-7;清除率依次为Ls AF-7Lp MT-3LpM T-5。【结论】筛选出3株适应人体胃肠液环境、耐胆盐、抑菌及降胆固醇活力强的乳杆菌,可作为进一步开发新的益生菌产品和保健型酸奶的菌株。  相似文献   

12.
The antibacterial properties of the indigenous microflora of rainbow trout ( Oncorhynchus mykiss Walbaum) and the potential use of inhibitory bacteria as fish probiotics were investigated. A total of 1018 bacteria and yeasts were isolated on tryptone soy agar (TSA) from skin, gills and intestine. Forty-five of these inhibited growth of the fish pathogenic bacterium Vibrio anguillarum in a well diffusion assay. The antagonism was most prominent among Pseudomonas spp., as 28 (66%) of the antagonistic bacteria belonged to this genus, despite constituting only 15% of the total tested flora. As pseudomonads are typically siderophore producers, chrome azurol S (CAS) agar was used as a semi-selective medium for isolation of antagonistic bacteria. On this medium, 75% of the iron-chelating strains were inhibitory to V. anguillarum . Eight strains out of a subset of 11 antagonists caused a 3–6 log unit reduction in the density of V. anguillarum [measured by polymerase chain reaction (PCR) detection in a most probable number (MPN) regimen] in a broth co-culture assay. Survival of rainbow trout infected with vibriosis was improved 13–43% by six out of nine antagonistic strains tested in vivo. All disease-protecting strains were pseudomonads, isolated from CAS plates, whereas two Carnobacterium spp. that were antagonistic in in vitro well diffusion assays did not alter the accumulated mortality of rainbow trout. The addition of live bacterial cultures to fish-rearing water may thus improve survival of the fish; however, in vitro antagonism could not completely predict an in vivo effect. Further studies on the underlying mechanism of activity are required to design appropriate selection criteria for fish probiotic bacteria.  相似文献   

13.
Probiotic bacteria elicit a number of beneficial effects in the gut but the mechanisms for these health promoting effects are not entirely understood. Recent in vitro data suggest that lactobacilli can utilise nitrate and nitrite to generate nitric oxide, a gas with immunomodulating and antibacterial properties. Here we further characterised intestinal NO generation by bacteria. In rats, dietary supplementation with lactobacilli and nitrate resulted in a 3-8 fold NO increase in the small intestine and caecum, but not in colon. Caecal NO levels correlated to nitrite concentration in luminal contents. In neonates, colonic NO levels correlated to the nitrite content of breast milk and faeces. Lactobacilli and bifidobacteria isolated from the stools of two neonates, generated NO from nitrite in vitro, whereas S. aureus and E. coli rapidly consumed NO. We here show that commensal bacteria can be a significant source of NO in the gut in addition to the mucosal NO production. Intestinal NO generation can be stimulated by dietary supplementation with substrate and lactobacilli. The generation of NO by some probiotic bacteria can be counteracted by rapid NO consumption by other strains. Future studies will clarify the biological role of the bacteria-derived intestinal NO in health and disease.  相似文献   

14.
15.
The aim of the present study was to design an in vitro model system to evaluate the probiotic potential of food. A single bioreactor system-gastrointestinal tract simulator (GITS) was chosen for process simulation on account of its considerable simplicity compared to multi-vessel systems used in previous studies. The bioreactor was evaluated by studying the viability of four known probiotic bacteria (Lactobacillus acidophilus La-5, Lactobacillus johnsonii NCC 533, Lactobacillus casei strain Shirota, and Lactobacillus rhamnosus GG) as a function of their physiological state. L. acidophilus and L. johnsonii survived in GITS better when introduced at an early stationary or exponential phase compared to being previously stored for 2 weeks at 4 degrees C. These two species were more resistant to bile salts and survived better than L. casei and L. rhamnosus GG. The latter two species gave large losses (up to 6 log) in plate counts independent of growth state due to the bile. However, experiments with some commercial probiotic products containing Lb. GG bacteria showed much better survival compared with model food (modified deMan-Rogosa-Sharpe growth medium), thus demonstrating the influence of the food matrix on the viability of bacteria. The study demonstrated that GITS can be successfully used for evaluation of viability of probiotic bacteria and functionality of probiotic food.  相似文献   

16.
The species and strain genetic diversity of bacterial cultures belonging to the genus Lactobacillus, which were isolated from the gastrointestinal microbiome of the human population living in the former Soviet Union in the years 1960-1980, was studied. The bacteria demonstrated probiotic characteristics. Phylogenetic analysis of sequences of the gene coding for 16S rRNA detected earlier by us, showed that the gene found in bacteria isolated from the intestinal content of healthy adults and represented by species L. plantarum, L. helveticus, L. casei/paracasei, L. rhamnosus, and L. fermentum has high homology (97-100%) with this gene in type representatives of the species. The genotypic and strain diversity of cultures was studied using RAPD-PCR and nonspecific primers. This method with the use of the ERIC-1 primer gave reliable and reproducible results as compared that using with M13 and MSP primers and allowed the identification of examined bacteria belonging to the genus Lactobacillus at the level of species and certification at the strain level.  相似文献   

17.
Gastrointestinal (GI) microflora is an important system in the host, as it has both pathogenic and probiotic bacteria. Most of the studies were focused on the human gut microflora and the available information on the intestinal microflora of goats was limited. This urged the need to inspect the impacts of the goat's gut microflora. Metagenomic investigation of probiotic bacteria in the GI tract of goat is one of the challenging streams because of the less available data of the uncultivable bacteria. In our report, comparative analysis of metagenomic and enrichment samples of goat intestinal content was done and this approach will be helpful in analyzing the identification of uncultivable and cultivable probiotic bacteria. This study mainly focused on three key probiotic adhesion genes, such as EF-Tu, mapA, and mub. The GI of four different goats were investigated for these genes. The data from this study showed that there is a wide diversity of these genes among goat intestinal samples.  相似文献   

18.
《Cell》2022,185(3):547-562.e22
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
(1) Among all plant traits, functions and pathways that influence microbial communities some will be discoverable in the lab using mutants. (2) From the functions highlighted in lab studies, a subset will overlap with plant traits variable among genotypes and expressed in realistic field conditions. (3) These traits tend to impact microbial communities associated with plants through a subset of important microbes that in turn influence the rest of the community. (4) Microbial communities impacted by host variation, both directly and indirectly, may influence important components of plant performance (5).
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号