首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dengue virus nonstructural protein 3 (NS3) is a multifunctional protein formed by a superfamily-2 RNA helicase linked to a protease domain. In this work, we report results from in vitro experiments designed to determine the oligomeric state of dengue virus NS3 helicase (NS3h) and to characterize fundamental properties of the interaction with single-stranded (ss)RNA. Pulsed field gradient-NMR spectroscopy was used to determine the effective hydrodynamic radius of NS3h, which was constant over a wide range of protein concentrations in the absence and presence of ssRNA. Size exclusion chromatography-static light scattering experiments showed that NS3h eluted as a monomeric molecule even in the presence of ssRNA. Binding of NS3h to ssRNA was studied by quantitative fluorescence titrations using fluorescein-labeled and unlabeled ssRNA oligonucleotides of different lengths, and the effect of the fluorescein label on the interaction parameters was also analyzed. Experimental results were well described by a statistical thermodynamic model based on the theory of non-specific interactions of large ligands to a one-dimensional lattice. We found that binding of NS3h to ssRNA oligonucleotides and to poly(A) is characterized by minimum and occluded binding site sizes both of 10 nucleotides and by a weak positive cooperativity between adjacent proteins.  相似文献   

2.
Herpes simplex virus type-1 origin-binding protein (UL9 protein) initiates viral replication by unwinding the origins. It possesses sequence-specific DNA-binding activity, single-stranded DNA-binding activity, DNA helicase activity, and ATPase activity that is strongly stimulated by single-stranded DNA. We have examined the role of cysteines in its action as a DNA helicase. The DNA helicase and DNA-dependent ATPase activities of UL9 protein were stimulated by reducing agent and specifically inactivated by the sulfhydryl-specific reagent N-ethylmaleimide. To identify the cysteine responsible for this phenomenon, a conserved cysteine in the vicinity of the ATP-binding site (cysteine 111) was mutagenized to alanine. UL9C111A protein exhibits defects in its DNA helicase and DNA-dependent ATPase activities and was unable to support origin-specific DNA replication in vivo. A kinetic analysis indicates that these defects are due to the inability of single-stranded DNA to induce high affinity ATP binding in UL9C111A protein. The DNA-dependent ATPase activity of UL9C111A protein is resistant to N-ethylmaleimide, while its DNA helicase activity remains sensitive. Accordingly, sensitivity of UL9 protein to N-ethylmaleimide is due to at least two cysteines. Cysteine 111 is involved in coupling single-stranded DNA binding to ATP-binding and subsequent hydrolysis, while a second cysteine is involved in coupling ATP hydrolysis to DNA unwinding.  相似文献   

3.
Dengue represents a substantial public health burden, particularly in low-resource countries. Non-structural protein 3 (NS3) is a multifunctional protein critical in the virus life cycle and has been identified as a promising anti-viral drug target. Despite recent crystallographic studies of the NS3 helicase domain, only subtle structural nucleotide-dependent differences have been identified, such that its coupled ATPase and helicase activities remain mechanistically unclear. Here we use molecular dynamics simulations to explore the nucleotide-dependent conformational landscape of the Dengue virus NS3 helicase and identify substantial changes in the protein flexibility during the ATP hydrolysis cycle. We relate these changes to the RNA-protein interactions and proposed translocation models for other monomeric helicases. Furthermore, we report a novel open-loop conformation with a likely escape route for Pi after hydrolysis, providing new insight into the conformational changes that underlie the ATPase activity of NS3.  相似文献   

4.
The mechanism of stimulation of a DNA helicase by its cognate single-strand DNA-binding protein was examined using herpes simplex virus type-1 UL9 DNA helicase and ICP8. UL9 and ICP8 are two essential components of the viral replisome that associate into a complex to unwind the origins of replication. The helicase and DNA-stimulated ATPase activities of UL9 are greatly elevated as a consequence of this association. Given that ICP8 acts as a single-strand DNA-binding protein, the simplest model that can account for its stimulatory effect predicts that it tethers UL9 to the DNA template, thereby increasing its processivity. In contrast to the prediction, data presented here show that the stimulatory activity of ICP8 does not depend on its single-strand DNA binding activity. Our data support an alternative hypothesis in which ICP8 modulates the activity of UL9. Accordingly, the data show that the ICP8-binding site of UL9 constitutes an inhibitory region that maintains the helicase in an inefficient ground state. ICP8 acts as a positive regulator by neutralizing this region. ICP8 does not affect substrate binding, ATP hydrolysis, or the efficiency of translocation/DNA unwinding. Rather, we propose that ICP8 increases the efficiency with which substrate binding and ATP hydrolysis are coupled to translocation/DNA unwinding.  相似文献   

5.
The helicase of hepatitis C virus (HCV) unwinds nucleic acid using the energy of ATP hydrolysis. The ATPase cycle is believed to induce protein conformational changes to drive helicase translocation along the length of the nucleic acid. We have investigated the energetics of nucleic acid binding by HCV helicase to understand how the nucleotide ligation state of the helicase dictates the conformation of its nucleic acid binding site. Because most of the nucleotide ligation states of the helicase are transient due to rapid ATP hydrolysis, several compounds were analyzed to find an efficient unhydrolyzable ATP analog. We found that the beta-gamma methylene/amine analogs of ATP, ATPgammaS, or [AlF4]ADP were not effective in inhibiting the ATPase activity of HCV helicase. On the other hand, [BeF3]ADP was found to be a potent inhibitor of the ATPase activity, and it binds tightly to HCV helicase with a 1:1 stoichiometry. Equilibrium binding studies showed that HCV helicase binds single-stranded nucleic acid with a high affinity in the absence of ATP or in the presence of ADP. Upon binding to the ATP analog, a 100-fold reduction in affinity for ssDNA was observed. The reduction in affinity was also observed in duplex DNA with 3' single-stranded tail and in RNA but not in duplex DNA. The results of this study indicate that the nucleic acid binding site of HCV helicase is allosterically modulated by the ATPase reaction. The binding energy of ATP is used to bring HCV helicase out of a tightly bound state to facilitate translocation, whereas ATP hydrolysis and product release steps promote tight rebinding of the helicase to the nucleic acid. On the basis of these results we propose a Brownian motor model for unidirectional translocation of HCV helicase along the nucleic acid length.  相似文献   

6.
The requirement for nucleotide hydrolysis in the DNA repair mechanism of the Escherichia coli UvrABC protein complex has been analyzed. The DNA-activated UvrAB ATPase activity is part of a helicase activity exhibited by the UvrAB protein complex. The helicase acts only on short duplexes and, therefore, is unlike other helicases such as those involved in DNA replication that unwind long duplexes. The strand displacement activity occurs in the 5'----3' direction and requires either ATP or dATP. The helicase activity is inhibited by UV photoproducts. The absence of this activity in a complex formed with proteolyzed UvrB (UvrB*), a complex also deficient in the endonuclease activity, suggests that this activity is important in the repair mechanism. The UvrAB protein complex may remain bound to a damaged site and by coupling the energy derived from ATP hydrolysis, alter the DNA conformation around the damage site to one that is permissive for endonucleolytic events. The conformational changes may take the form of DNA unwinding.  相似文献   

7.
Helicases contain conserved motifs involved in ATP/magnesium/nucleic acid binding and in the mechanisms coupling nucleotide hydrolysis to duplex unwinding. None of these motifs are located at the adenine-binding pocket of the protein. We show here that the superfamily I helicase, helicase IV from Escherichia coli, utilizes a conserved glutamine and conserved aromatic residue to interact with ATP. Other superfamily I helicases such as, UvrD/Rep/PcrA also possess these residues but in addition they interact with adenine via a conserved arginine, which is replaced by a serine in helicase IV. Mutation of this serine residue in helicase IV into histidine or methionine leads to proteins with unaffected ATPase and DNA-binding activities but with low helicase activity. This suggests that residues located at the adenine-binding pocket, in addition to be involved in ATP-binding, are important for efficient coupling between ATP hydrolysis and DNA unwinding.  相似文献   

8.
The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular ‘switch’ regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system.  相似文献   

9.
C G Lee  K A Chang  M I Kuroda    J Hurwitz 《The EMBO journal》1997,16(10):2671-2681
Drosophila maleless (mle) is required for X chromosome dosage compensation and is essential for male viability. Maleless protein (MLE) is highly homologous to human RNA helicase A and the bovine counterpart of RNA helicase A, nuclear helicase II. In this report, we demonstrate that MLE protein, overexpressed and purified from Sf9 cells infected with recombinant baculovirus, possesses RNA/DNA helicase, adenosine triphosphatase (ATPase) and single-stranded (ss) RNA/ssDNA binding activities, properties identical to RNA helicase A. Using site-directed mutagenesis, we created a mutant of MLE (mle-GET) that contains a glutamic acid in place of lysine in the conserved ATP binding site A. In vitro biochemical analysis showed that this mutation abolished both NTPase and helicase activities of MLE but affected the ability of MLE to bind to ssRNA, ssDNA and guanosine triphosphate (GTP) less severely. In vivo, mle-GET protein could still localize to the male X chromosome coincidentally with the male-specific lethal-1 protein, MSL-1, but failed to complement mle1 mutant males. These results indicate that the NTPase/helicase activities are essential functions of MLE for dosage compensation, perhaps utilized for chromatin remodeling of X-linked genes.  相似文献   

10.
RNA unwinding activity of SV40 large T antigen   总被引:32,自引:0,他引:32  
M Scheffner  R Knippers  H Stahl 《Cell》1989,57(6):955-963
Large T antigen, the regulatory protein encoded by simian virus 40, has DNA helicase activity and unwinds double-stranded DNA at the expense of ATP. T antigen also functions as an RNA helicase separating duplex regions in partially double-stranded RNA substrates. Surprisingly, T antigen RNA helicase activity requires UTP, CTP, or GTP as a cofactor, whereas ATP is an inefficient energy source for the RNA unwinding reaction. Accordingly, T antigen has both an intrinsic non-ATP NTPase activity that is stimulated by single-stranded RNA and an ATPase activity stimulated by single-stranded DNA. Thus, it appears that the bound nucleotide determines whether T antigen acts as an RNA helicase or as a DNA helicase.  相似文献   

11.
We have recently published the crystal structure of the adeno-associated virus type 2 superfamily 3 (SF3) helicase Rep40. Although based on its biochemical properties it is unlikely that Rep40 plays a central role as a replicative helicase the involvement of this motor protein in DNA packaging has recently been demonstrated. Here we focused our attention on residues that fall within and adjacent to the B' motif of SF3 helicases that directly interact with single-stranded DNA during translocation of the motor protein. In vitro, alanine substitution at positions Lys-404 or Lys-406 abrogated the ability of the protein to interact with single-stranded DNA as demonstrated by electrophoretic mobility shift assay and fluorescence anisotropy, and accordingly these mutants could not unwind a partially duplex DNA substrate. Despite this loss of helicase activity, basal ATPase activity in these mutants remained intact. However, unlike the wild-type protein, K404A and K406A ATPase activity was not stimulated by DNA. As predicted, disruption of motor activity through interference with DNA binding resulted in an inability of Rep40 to package adeno-associated virus DNA in a tissue culture-based assay. Taken together, we characterized, for the first time in an SF3 helicase family member, residues that are directly involved in single-stranded DNA binding and that are critical for the Rep motor activity. Based on our findings we propose B' as the signature motif of SF3 helicases that is responsible for the complex interactions required for the coupling of DNA binding and ATP hydrolysis.  相似文献   

12.
The herpes simplex virus, type I origin-binding protein, OBP, is a superfamily II DNA helicase encoded by the UL9 gene. OBP binds in a sequence-specific and cooperative way to the viral origin of replication oriS. OBP may unwind partially and introduce a hairpin into the double-stranded origin of replication. The formation of the novel conformation referred to as oriS* also requires the single-stranded DNA-binding protein, ICP8, and ATP hydrolysis. OBP forms a stable complex with oriS*. The hairpin in oriS* provides a site for sequence-specific attachment, and a single-stranded region triggers ATP hydrolysis. Here we use Escherichia coli exonuclease I to map the binding of the C-terminal domain of OBP to the hairpin and the helicase domains to the single-stranded tail. The helicase domains cover a stretch of 23 nucleotides of single-stranded DNA. Using streptavidin-coated magnetic beads, we show that OBP may bind two copies of double-stranded DNA (one biotin-labeled and the other one radioactively labeled) but only one copy of oriS*. It is the length of the single-stranded tail that determines the stoichiometry of OBP.DNA complexes. OBP interacts with the bases of the single-stranded tail, and ATP hydrolysis is triggered by position-specific interactions between OBP and bases in the single-stranded tail of oriS*.  相似文献   

13.
The nucleoside triphosphatase (NTPase)/helicase associated with nonstructural protein 3 of West Nile (WN) virus was purified from cell culture medium harvested from virus-infected Vero cells. The purification procedure included sequential chromatography on Superdex-200 and Reactive Red 120 columns, followed by a concentration step on an Ultrogel hydroxyapatite column. The nature of the purified protein was confirmed by immunoblot analysis using a WN virus-positive antiserum, determination of its NH(2) terminus by microsequencing, and a binding assay with 5'-[(14)C]fluorosulfonylbenzoyladenosine. Under optimized reaction conditions the enzyme catalyzed the hydrolysis of ATP and the unwinding of the DNA duplex with k(cat) values of 133 and 5.5 x 10(-3) s(-1), respectively. Characterization of the NTPase activity of the WN virus enzyme revealed that optimum conditions with respect to the Mg(2+) requirement and the monovalent salt or polynucleotide response differed from those of other flavivirus NTPases. Initial kinetic studies demonstrated that the inhibition (or activation) of ATPase activity by ribavirin-5'-triphosphate is not directly related to changes in the helicase activity of the enzyme. Further analysis using guanine and O(6)-benzoylguanine derivatives revealed that the ATPase activity of WN virus NTPase/helicase may be modulated, i.e., increased or reduced, with no effect on the helicase activity of the enzyme. On the other hand the helicase activity could be modulated without changing the ATPase activity. Our observations show that the number of ATP hydrolysis events per unwinding cycle is not a constant value.  相似文献   

14.
Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype.  相似文献   

15.
Based upon the crystal structures of PcrA helicase, we have made and characterised mutations in a number of conserved helicase signature motifs around the ATPase active site. We have also determined structures of complexes of wild-type PcrA with ADPNP and of a mutant PcrA complexed with ADPNP and Mn2+. The kinetic and structural data define roles for a number of different residues in and around the ATP binding site. More importantly, our results also show that there are two functionally distinct conformations of ATP in the active site. In one conformation, ATP is hydrolysed poorly whereas in the other (activated) conformation, ATP is hydrolysed much more rapidly. We propose a mechanism to explain how the stimulation of ATPase activity afforded by binding of single-stranded DNA stabilises the activated conformation favouring Mg2+binding and a consequent repositioning of the gamma-phosphate group which promotes ATP hydrolysis. A part of the associated conformational change in the protein forces the side-chain of K37 to vacate the Mg2+binding site, allowing the cation to bind and interact with ATP.  相似文献   

16.
Karpe YA  Aher PP  Lole KS 《PloS one》2011,6(7):e22336
Chikungunya virus (CHIKV) is an insect borne virus (genus: Alphavirus) which causes acute febrile illness in humans followed by a prolonged arthralgic disease that affects the joints of the extremities. Re-emergence of the virus in the form of outbreaks in last 6-7 years has posed a serious public health problem. CHIKV has a positive sense single stranded RNA genome of about 12,000 nt. Open reading frame 1 of the viral genome encodes a polyprotein precursor, nsP1234, which is processed further into different non structural proteins (nsP1, nsP2, nsP3 and nsP4). Sequence based analyses have shown helicase domain at the N-terminus and protease domain at C-terminus of nsP2. A detailed biochemical analysis of NTPase/RNA helicase and 5'-RNA phosphatase activities of recombinant CHIKV-nsP2T protein (containing conserved NTPase/helicase motifs in the N-terminus and partial papain like protease domain at the C-terminus) was carried out. The protein could hydrolyze all NTPs except dTTP and showed better efficiency for ATP, dATP, GTP and dGTP hydrolysis. ATP was the most preferred substrate by the enzyme. CHIKV-nsP2T also showed 5'-triphosphatase (RTPase) activity that specifically removes the γ-phosphate from the 5' end of RNA. Both NTPase and RTPase activities of the protein were completely dependent on Mg(2+) ions. RTPase activity was inhibited by ATP showing sharing of the binding motif by NTP and RNA. Both enzymatic activities were drastically reduced by mutations in the NTP binding motif (GKT) and co-factor, Mg(2+) ion binding motif (DEXX) suggesting that they have a common catalytic site.  相似文献   

17.
Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.  相似文献   

18.
RNase R, which belongs to the RNB family of enzymes, is a 3′ to 5′ hydrolytic exoribonuclease able to digest highly structured RNA. It was previously reported that RNase R possesses an intrinsic helicase activity that is independent of its ribonuclease activity. However, the properties of this helicase activity and its relationship to the ribonuclease activity were not clear. Here, we show that helicase activity is dependent on ATP and have identified ATP-binding Walker A and Walker B motifs that are present in Escherichia coli RNase R and in 88% of mesophilic bacterial genera analyzed, but absent from thermophilic bacteria. We also show by mutational analysis that both of these motifs are required for helicase activity. Interestingly, the Walker A motif is located in the C-terminal region of RNase R, whereas the Walker B motif is in its N-terminal region implying that the two parts of the protein must come together to generate a functional ATP-binding site. Direct measurement of ATP binding confirmed that ATP binds only when double-stranded RNA is present. Detailed analysis of the helicase activity revealed that ATP hydrolysis is not required because both adenosine 5′-O-(thiotriphosphate) and adenosine 5′-(β,γ-imino)triphosphate can stimulate helicase activity, as can other nucleoside triphosphates. Although the nuclease activity of RNase R is not needed for its helicase activity, the helicase activity is important for effective nuclease activity against a dsRNA substrate, particularly at lower temperatures and with more stable duplexes. Moreover, competition experiments and mutational analysis revealed that the helicase activity utilizes the same catalytic channel as the nuclease activity. These findings indicate that the helicase activity plays an essential role in the catalytic efficiency of RNase R.  相似文献   

19.
X Li  C K Tan  A G So  K M Downey 《Biochemistry》1992,31(13):3507-3513
A DNA helicase (delta helicase) which partially copurifies with DNA polymerase delta has been highly purified from fetal calf thymus. delta helicase differs in physical and enzymatic properties from other eukaryotic DNA helicases described thus far. The enzyme has an apparent mass of 57 kDa by gel filtration and is associated with polypeptides of 56 and 52 kDa by SDS-polyacrylamide gel electrophoresis. Photo-cross-linking of the purified enzyme with [alpha-32P]ATP resulted in labeling of a polypeptide of approximately 58 kDa, suggesting that the active site is present on the larger polypeptide. Unwinding of a partial duplex requires a nucleoside triphosphate which can be either ATP or dATP but not a nonhydrolyzable analogue of ATP. Other ribo- and deoxyribonucleoside triphosphates have little or no activity as cofactors. delta helicase also has DNA-dependent ATPase activity which has a relatively low Km for ATP (40 microM). delta helicase binds to single-stranded DNA but has little or no affinity for double-stranded DNA or single-stranded RNA. Similar to replicative DNA helicases from prokaryotes and the herpes simplex virus type 1 helicase-primase, delta helicase translocates in the 5'-3' direction along the strand to which it is bound and preferentially unwinds DNA substrates with a forklike structure.  相似文献   

20.
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that recognizes and degrades aberrant mRNAs containing premature stop codons. A critical protein in NMD is Upf1p, which belongs to the helicase super family 1 (SF1), and is thought to utilize the energy of ATP hydrolysis to promote transitions in the structure of RNA or RNA-protein complexes. The crystal structure of the catalytic core of human Upf1p determined in three states (phosphate-, AMPPNP- and ADP-bound forms) reveals an overall structure containing two RecA-like domains with two additional domains protruding from the N-terminal RecA-like domain. Structural comparison combined with mutational analysis identifies a likely single-stranded RNA (ssRNA)-binding channel, and a cycle of conformational change coupled to ATP binding and hydrolysis. These conformational changes alter the likely ssRNA-binding channel in a manner that can explain how ATP binding destabilizes ssRNA binding to Upf1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号