首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel nitric oxide (NO) donating triazole/oxime hybrids was prepared and evaluated for their anti-inflammatory activity. Most of the tested compounds showed significant anti-inflammatory activity using carrageenan-induced rat paw edema method compared to indomethacin. Calculation of the ulcer indices and histopathological investigation indicated that the prepared NO-donating oximes exhibited less ulcerogenicity compared to their intermediate ketones and indomethacin. The NO-donating oxime 6i revealed significant activity against renal cancer A498 cell lines with 50.52 cell growth inhibition.  相似文献   

2.
A series of glycolamide naproxen prodrugs containing a nitrate group as a nitric oxide (NO) donor moiety has been synthesized. These compounds were evaluated for their anti-inflammatory activity, naproxen release, and gastric tolerance. Compounds 4a, 4b, 5a, 5b, 7b, and 7c exhibited anti-inflammatory activity equivalent to that of the parent NSAID, naproxen-Na, in the rat carrageenan paw edema model. At equimolar doses relative to naproxen-Na, the NO-donor glycolamide derivatives 4a, 4b, 5a, 5b, 7b, and 7c were gastro-sparing in the rat. Naproxen formation from these NO-donor glycolamides varied among the structures examined, with the N-substituent on the amide group having a particular influence, and demonstrated their prodrug nature. Compound 7b was selected for exemplary demonstration that the glycolamide nitrates can be bioactivated to release NO. These data open the possibility that naproxen glycolamide nitrates may represent a safer alternative to naproxen as anti-inflammatory medicines.  相似文献   

3.
A novel group of 1,3,4-oxadaiazoles, a group known for their anti-inflammatory activity, is hybridized with nitric oxide (NO) releasing group, oxime, for its gastro-protective action and potential synergistic effect. The synthesized hybrids were evaluated for their anti-inflammatory, analgesic, antioxidant and ulcerogenic activities. Most of the tested compounds showed excellent anti-inflammatory activity with compound 8e being more active than indomethacin. They also showed moderate analgesic activity but no antioxidant one. The ability of the synthesized compounds to inhibit COX-1 and COX-2 is studied and the prepared compounds were able to inhibit both COXs non-selectively with IC50s of 0.75–70.50 μM. Docking studies revealed the mode of interaction of the tested compounds into the empty pocket of the isozymes. All of the synthesized compounds interact with COXs active site with energy scores comparable to that of ibuprofen. All compounds showed a safer profile on the stomach tissue integrity compared to conventional NSAIDs. The designed strategy was applied to ibuprofen to introduce ibuprofen/oxadiazole/NO hybrid. The synthesized ibuprofen hybrid is a promising alternative to ibuprofen having similar anti-inflammatory activity but with safer GIT profile.  相似文献   

4.
The search for safer non-steroidal anti-inflammatory drugs (NSAIDs) continues with the failure of anticipated 'ideal' anti-inflammatory agents, the coxibs, on long-term usage. Increased gastric motility and acidity due to the free carboxy group are involved in the etiology of gastric toxicity, common to conventional NSAIDs. Keeping this fact in mind, it was planned to modify some of the conventional NSAIDs to amino-alcohol ester derivatives, which satisfied the structural requirements for these compounds to possess anticholinergic activity in the intact form. Besides blocking the acidic carboxylic group, incorporation of anticholinergic acivity in these molecules was expected to reduce the gastric toxicity by decreasing gastric acid secretion and motility. Synthesis and pharmacological evaluation of six different N,N-disubstituted amino-ethyl ester derivatives, structurally resembling the amino-alcohol ester class of anticholinergic agents, each for [1,1'-biphenyl]-4-acetic acid (3) and flurbiprofen (10), have been reported as potential substitutes for these NSAIDs, with improved therapeutic profile. All the ester derivatives were found to have sufficient chemical stability in buffers (pH 2.0 and 7.4), ensuring them to be absorbed as intact moieties from the gastrointestinal tract. A significant reduction in ulcerogenic potency in comparison to the parent drugs with a slightly higher anti-inflammatory potency suggests that the majority of these candidates have an improved therapeutic profile over their parent drugs. Hence, a promising novel approach, different from the conventional prodrug concept, has been successfully worked out to overcome the local gastric toxicity, yielding therapeutically better compounds for long-term oral anti-inflammatory therapy.  相似文献   

5.
A group of novel chalcone derivatives comprising hydroxamic acid or 2-aminobenzamide group as zinc binding groups (ZBG) were synthesized. The structure of the prepared compounds was fully characterized by IR, NMR and elemental microanalyses. Most of the tested compounds displayed strong to moderate HDAC inhibitory activity. Some of these compounds showed potent anti-proliferative activity against human HepG2, MCF-7 and HCT-116 cell lines. In particular, compounds 4a and 4b exhibited significant anti-proliferative activity against the three cell lines compared to SAHA as reference drug and displayed promising profile as anti-tumor candidates. The results indicated that these chalcone derivatives could serve as a promising lead compounds for further optimization as antitumor agents.  相似文献   

6.
It was envisaged to combine high antipyretic activity of paracetamol into commonly used NSAIDs. To achieve this goal new chemical entities were synthesized by chemically combining paracetamol and NSAIDs, and biologically evaluated for their antipyretic, analgesic, anti-inflammatory and ulcerogenic potential. The acid chloride of parent NSAIDs was reacted with excess of p-aminophenol to yield the desired p-amidophenol derivatives (1B–7B). Acetate derivatives (1C–7C) of these phenols (1B–7B) were also prepared by their treatment with acetic anhydride, in order to see the impact of blocking the free phenolic group on the biological activity of the derivatives. All the synthesized p-amidophenol derivatives showed improved antipyretic activity than paracetamol with retention of anti-inflammatory activity of their parent NSAIDs. These compounds elicited no ulcerogenicity unlike their parent drugs.  相似文献   

7.
Synthesis and anti-inflammatory activity of benzophenone analogues   总被引:1,自引:0,他引:1  
A series of substituted benzophenone analogues has been synthesized and evaluated as orally active anti-inflammatory agents with reduced side effects. The anti-inflammatory and ulcerogenic activities of the compounds were compared with naproxen, indomethacin, and phenylbutazone. In carrageenan-induced foot pad edema assay, benzophenone analogues showed an interesting anti-inflammatory activity. In the air-pouch test, some of the analogues reduced the total number of leukocytes of the exudate, which indicates inhibition of prostaglandin production. Side effects of the compounds were examined on gastric mucosa, in the liver and stomach. None of the compounds showed significant side effects compared with nonsteroidal anti-inflammatory drugs such as indomethacin and naproxen.  相似文献   

8.
Since NSAIDs are commonly used anti-inflammatory agents that produce adverse effects, there have been ongoing efforts to develop more effective and less toxic compounds. Based on the structure of the anti-inflammatory pyrrolizines licofelone and ketorolac, a series of 1-arylpyrrolizin-3-ones was synthesized. Also prepared was a series of substituted pyrroles, mimicking similar known anti-inflammatory agents. The anti-inflammatory activity of the test compounds was determined with a phorbol ester (TPA)-induced murine ear edema protocol. For the most active derivatives, 19bc/20bc, the anti-inflammatory effect was the same as that of the reference compound (indomethacin) and was dose-dependent. These compounds have an aryl ring at the C-1 position and a methoxycarbonyl group at the C-2 position of the pyrrolizine framework, which represent plausible pharmacophore groups with anti-inflammatory activity. The anti-inflammatory activity of 1-substituted analogs containing a five- or six-membered heterocycles was lower but still good, while that of the pyrroles was only moderate. Although the docking studies suggests that the effect of analogs 19ac/20ac is associated with the inhibition of cyclooxygenase-2, experimental assays did not corroborate this idea. Indeed, a significant inhibition of NO was found experimentally as a plausible mechanism of action.  相似文献   

9.
A novel group of O2-acetoxymethyl-protected diazeniumdiolate-based non-steroidal anti-inflammatory prodrugs (NONO-NSAIDs) were synthesized by esterifying the carboxylate group of aspirin, ibuprofen, or indomethacin with O2-acetoxymethyl 1-[N-(2-hydroxyethyl)-N-methylamino]diazeniumdiolate. The resulting nitric oxide (*NO)-releasing prodrugs (7-9) did not exhibit in vitro cyclooxygenase (COX) inhibitory activity against the COX-1 and COX-2 isozymes (IC50s>100 microM). In contrast, prodrugs 7 and 8 significantly decreased carrageenan-induced rat paw edema showing enhanced in vivo anti-inflammatory activities (ID50's=552 and 174 micromol/kg, respectively) relative to those of the parent NSAIDs aspirin (ID50=714 micromol/kg) and ibuprofen (ID50=326 micromol/kg). The rate of porcine liver esterase-mediated *NO release from prodrugs 7-9 (2 mol of *NO/mol of test compound in 0.6-6.5 min) was substantially higher compared to that observed without enzymatic catalysis (about 1 mol of *NO/mol of test compound in 40-48 h). These incubation studies suggest that both *NO and the parent NSAID would be released upon in vivo activation (hydrolysis) by esterases. Data acquired in an in vivo ulcer index (UI) assay showed that NONO-aspirin (UI=0.8), NONO-indomethacin (UI=1.3), and particularly NONO-ibuprofen (UI=0) were significantly less ulcerogenic compared to the parent drugs aspirin (UI=57), ibuprofen (UI=46) or indomethacin (UI=34) at equimolar doses. The release of aspirin and *NO from the NONO-aspirin (7) prodrug constitutes a potentially beneficial property for the prophylactic prevention of thrombus formation and adverse cardiovascular events such as stroke and myocardial infarction.  相似文献   

10.
A sequence of substituted benzophenone-N-ethyl piperidine ether analogues has been synthesized and evaluated as orally active anti-inflammatory agents with reduced side effects. The anti-inflammatory and ulcerogenic activities of the compounds were compared with naproxen, indomethacin, and phenylbutazone. These analogues showed an interesting anti-inflammatory activity in carrageenan-induced foot pad edema assay. In the air-pouch test, some of the analogues reduced the total number of leukocytes of the exudate, which indicates inhibition of prostaglandin production. Side effects of the compounds were examined on gastric mucosa, in the liver and stomach. None of the compounds illustrated significant side effects compared with standard drugs like indomethacin and naproxen.  相似文献   

11.
The pyrrole derivatives la, b and 2a, b were used as precursors for the preparation of N-substituted pyrrole derivatives 3a, b-9a, b and pyrrolo[2,3-d]pyrimidines 13-16. Also, all the newly prepared products were tested for anti-inflammatory activity as analogues to fenamates, and some of them revealed moderate anti-inflammatory activity compared to the standard drug indomethacin.  相似文献   

12.
Two series of chalcone/aryl carboximidamide hybrids 4a–f and 6a–f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.  相似文献   

13.
The carboxylic acid group (–COOH) present in classical NSAIDs is partly responsible for the gastric toxicity associated with the administration of these drugs. This concept has been extensively proven using NSAID prodrugs. However, the screening of NSAIDs with no carboxylic acid at all has been neglected. The goal of this work was to determine if new NSAID derivatives devoid of acidic moieties would retain the anti-inflammatory activity of the parent compound, without causing gastric toxicity. To test this concept, we replaced the carboxylic acid group in ibuprofen, flurbiprofen, and naproxen with three ammonium moieties. We tested the resulting water-soluble NSAID derivatives for anti-inflammatory and ulcerogenic activity in vitro and in vivo. In this regard, we observed that all non-acidic NSAIDs exerted a potent anti-inflammatory activity, suggesting that the acid group in commercial 2-phenylpropionic acid NSAIDs not be an essential requirement for anti-inflammatory activity. These data provide complementary evidence supporting the discontinuation of ulcerogenic acidic NSAIDs.  相似文献   

14.
Bergenin is an isocoumarin natural product which aides in fat loss, healthy weight maintenance, enhancing the lipolytic effects of norepinephrine, inhibiting the formation of interleukin 1α and cyclooxygenases-2. Here we describe the anti-inflammatory activity of new bergenin derivatives 1-15 in the respiratory burst assay. Bergenin was isolated from the crude extract of Mallotus philippenensis after repeated column chromatography and was then subjected to chemical derivatization. The structures of all compounds were elucidated by NMR and mass spectroscopic techniques. Compound 2 was also studied using single crystal X-ray diffraction. Compounds 4, (54.5±2.2%) 5 (47.5±0.5%) 5, and 15 (86.8±1.9%) showed significant (P≤0.005) NO inhibitory activities whereas 6, 7, 11, 12 and 13 displayed moderate inhibitory activities that ranges between 16% and 31%. Furthermore compounds 4 and 15, were discovered as significant (P≤0.005) TNF-α inhibitors with 98% and 96% inhibition, respectively, while compounds 3, 5, 7, 8, 11, and 12 showed low level of TNF-α inhibition (0.4-28%). Compounds 8, 13 and 15 exhibited moderate anti-inflammatory IC(50) activities with 212, 222, and 253 μM, respectively, compared to the standard anti-inflammatory drug indomethacin as well as the parent bergenin compound. No cytotoxic effects could be detected when the compounds were tested on 3T3 cells up to concentrations of 100 μM.  相似文献   

15.
In our effort to identify potent gastric sparing anti-inflammatory agents, a series of methyl sulfanyl/methyl sulfonyl substituted 2,3-diaryl quinazolinones were designed by analogue-based design strategy and synthesized for biological evaluation. Subsequently, the compounds were evaluated for both cyclooxygenase inhibitions by ovine COX assay and carrageenan-induced rat paw edema assay. All the methyl sulfonyl substituted quinazolinones were exhibited promising anti-inflammatory activity. In particular, 6-bromo-3-(4-methanesulfonyl-phenyl)-2-phenyl-3H-quinazolin-4-one, 7-chloro-3-(4-methanesulfonyl-phenyl)-2-phenyl-3H-quinazolin-4-one, 3-(4-methanesulfonyl-phenyl)-2-(4-methoxy-phenyl)-3H-quinazolin-4-one and 6-bromo-3-(4-methanesulfonyl-phenyl)-2-(4-methoxy-phenyl)-3H-quinazolin-4-one emerged as the most active compounds in the series. The results of ulcerogenic activity assay suggest that these compounds are gastric safe compared to indomethacin. The molecular docking analysis was performed to understand the binding interactions of these compounds to COX-2 enzyme. The results from the present investigation suggests that 2,3-diaryl quinazolinones as a promising template for the design of new gastric safe anti-inflammatory agents, which can be further explored for potential anti-inflammatory activity.  相似文献   

16.
The implication of NO in many inflammatory diseases has been well documented. We have previously reported that some chalcone derivatives can control the iNOS pathway in inflammatory processes. In the present study, we have assessed the NO-scavenging capacity of three chalcone derivatives (CH8, CH11, and CH12) in a competitive assay with HbO(2), a well-known physiologically relevant NO scavenger. Our data identify these chalcones as new NO scavengers. The estimated second-order rate constants (k(s)) for the reaction of the three derivatives with NO is in the same range as the value obtained for HbO(2), with CH11 exerting the greatest effect. These results suggest an additional action of these compounds on NO regulation.  相似文献   

17.
A series of 10 compounds resulting from the conjugation of O-prenylated naturally occurring benzoic and cinnamic acids to l-NAME were synthesized and tested together with the corresponding unprenylated parent molecule as anti-inflammatory agents for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophages. Results indicated that the coupling between O-geranyl and O-isopentenylcinnamic acids and l-NAME led to products with an enhanced activity when compared to the parent compounds.  相似文献   

18.
A series of nitric oxide donating acridone derivatives are synthesized and evaluated for in vitro cytotoxic activity against different sensitive and resistant cancer cell lines MCF7/Wt, MCF7/Mr (BCRP overexpression) and MCF7/Dx (P-gp expression). The results showed that NO-donating acridones are potent against both the sensitive and resistant cells. Structure activity relationship indicate that the nitric oxide donating moiety connected through a butyl chain at N10 position as well as morpholino moiety linkage through an amide bridge on the acridone ring system at C-2 position, are required to exert a good cytotoxic effect. Further, good correlations were observed when cytotoxic properties were compared with in vitro nitric oxide release rate, nitric oxide donating group potentiated the cytotoxic effect of the acridone derivatives. Exogenous release of nitric oxide by NO donating acridones enhanced the accumulation of doxorubicin in MCF7/Dx cell lines when it was coadministered with doxorubicin, which inhibited the efflux process of doxorubicin. In summary, a nitric oxide donating group can potentiate the anti-MDR property of acridones.  相似文献   

19.
A series of novel quinolines incorporating 1,2,4-triazole/oxime hybrids were prepared. They showed remarkable anti-inflammatory activity and exhibited very low incidence of gastric ulceration, compared to indomethacin. Most of the compounds tested showed remarkable inhibition of the COX-1 isozyme, with IC50’s ranging from 0.48 to 28 µM. Compounds 7c and 9g showed high safety profiles with normal stomach tissue integrity. Docking studies supported the observed in vitro inhibitory activity towards the COX enzymes that may explain their promising anti-inflammatory activity relative to indomethacin. Moreover, differences between the COX-1 and COX-2 isozymes in observed energy scores, as well as in the number of interactions with some of the compounds tested, might predict their higher selectivity towards COX-1 rather than COX-2. Compound 9e was found to inhibit both COXs non-competitively with Ki values of 81 µM and 94.6 µM.  相似文献   

20.
The synthesis of nitric oxide (NO) releasing anti-inflammatory molecules is an innovative strategy to design novel anti-inflammatory drugs. These compounds slowly release NO, via an enzymatic pathway conferring new biological activities. Here we report the potent anti-inflammatory profile and the bronchodilator effect of nitro-derivatives of steroids, prednisolone, especially. The experiments were performed on guinea pig trachea or perfused bronchioles precontracted by methacholine. We demonstrated for the first time that unlike the parent compounds which produced weak bronchodilation at the maximum used dose (10(-4) M), NO-steroids caused a significant bronchodilating activity up to 70% of the maximal relaxation induced by 10(-4) M papaverine. This effect was epithelium- and endogenous-independent but cGMP-dependent. Taken together these data suggest that NO-steroids possessed a more potent anti-inflammatory activity than native compounds coupled with a concentration-dependent bronchodilating activity. Further studies are required to determine if NO-steroids will be effective as anti-inflammatory agents in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号