共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The centipede Strigamia maritima forms all of its segments during embryogenesis. Trunk segments form sequentially from an apparently undifferentiated disk of cells at the posterior of the germ band. We have previously described periodic patterns of gene expression in this posterior disc that precede overt differentiation of segments, and suggested that a segmentation oscillator may be operating in the posterior disc. We now show that genes of the Notch signalling pathway, including the ligand Delta, and homologues of the Drosophila pair-rule genes even-skipped and hairy, show periodic expression in the posterior disc, consistent with their involvement in, or regulation by, such an oscillator. These genes are expressed in a pattern of apparently expanding concentric rings around the proctodeum, which become stripes at the base of the germ band where segments are emerging. In this transition zone, these primary stripes define a double segment periodicity: segmental stripes of engrailed expression, which mark the posterior of each segment, arise at two different phases of the primary pattern. Delta and even-skipped are also activated in secondary stripes that intercalate between primary stripes in this region, further defining the single segment repeat. These data, together with observations that Notch mediated signalling is required for segment pattern formation in other arthropods, suggest that the ancestral arthropod segmentation cascade may have involved a segmentation oscillator that utilised Notch signalling. 相似文献
3.
We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing. 相似文献
4.
Arthropods vary more than 30-fold in segment number. The evolutionary origins of differences in segment number among species must ultimately lie in intraspecific variation. Yet paradoxically, in most groups of arthropods, the number of segments is fixed for each species and shows no intra- or interpopulation variation at all. Geophilomorph centipedes are an exception to this general rule, and exhibit intraspecific variation in segment number, with differences between individuals being determined during embryonic development and hence independent of population age structure. Significant differences in segment number between different geographical populations of the same species have been previously reported, but insufficient sampling has been conducted to reveal any particular geographical pattern. Here, we reveal a latitudinal cline in segment number in the geophilomorph species Strigamia maritima: segment number in British populations decreases with distance north. This is the first such cline to be reported for any centipede species; indeed as far as we are aware it is the first such cline reported for any arthropod species. In vertebrates, fish are known to exhibit a latitudinal cline in segment number, but interestingly, this is in the opposite direction; fish add segments with increasing latitude, centipedes subtract them. 相似文献
5.
Background
Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this.Results
Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning.Conclusions
Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.6.
7.
Strigamia maritima (Myriapoda; Chilopoda) is a species from the soil-living order of geophilomorph centipedes. The Geophilomorpha is the most speciose order of centipedes with over a 1000 species described. They are notable for their large number of appendage bearing segments and are being used as a laboratory model to study the embryological process of segmentation within the myriapods. Using a scaffold derived from the recently published genome of Strigamia maritima that contained multiple mitochondrial protein-coding genes, here we report the complete mitochondrial genome of Strigamia, the first from any geophilomorph centipede. The mitochondrial genome of S. maritima is a circular molecule of 14,938 base pairs, within which we could identify the typical mitochondrial genome complement of 13 protein-coding genes and 2 ribosomal RNA genes. Sequences resembling 16 of the 22 transfer RNA genes typical of metazoan mitochondrial genomes could be identified, many of which have clear deviations from the standard ‘cloverleaf’ secondary structures of tRNA. Phylogenetic trees derived from the concatenated alignment of protein-coding genes of S. maritima and >50 other metazoans were unable to resolve the Myriapoda as monophyletic, but did support a monophyletic group of chilopods: Strigamia was resolved as the sister group of the scolopendromorph Scolopocryptos sp. and these two (Geophilomorpha and Scolopendromorpha), along with the Lithobiomorpha, formed a monophyletic group the Pleurostigmomorpha. Gene order within the S. maritima mitochondrial genome is unique compared to any other arthropod or metazoan mitochondrial genome to which it has been compared. The highly unusual organisation of the mitochondrial genome of Strigamia maritima is in striking contrast with the conservatively evolving nuclear genome: sampling of more members of this order of centipedes will be required to see whether this unusual organization is typical of the Geophilomorpha or results from a more recent reorganisation in the lineage leading to Strigamia. 相似文献
8.
Patricia Green Amelia Y. Hartenstein Volker Hartenstein 《Cell and tissue research》1993,273(3):583-598
We have used electron-microscopic studies, bromodeoxyuridine (BrdU) incorporation and antibody labeling to characterize the development of the Drosophila larval photoreceptor (or Bolwig's) organ and the optic lobe, and have investigated the role of Notch in the development of both. The optic lobe and Bolwig's organ develop by invagination from the posterior procephalic region. After cells in this region undergo four postblastoderm divisions, a total of approximately 85 cells invaginate. The optic lobe invagination loses contact with the outer surface of the embryo and forms an epithelial vesicle attached to the brain. Bolwig's organ arises from the ventralmost portion of the optic lobe invagination, but does not become incorporated in the optic lobe; instead, its 12 cells remain in the head epidermis until late in embryogenesis when they move in conjunction with head involution to reach their final position alongside the pharynx. Early, before head involution, the cells of Bolwig's organ form a superficial group of 7 cells arranged in a rosette pattern and a deep group of 5 cells. Later, all neurons move out of the surface epithelium. Unlike adult photoreceptors, they do not form rhabdomeres; instead, they produce multiple, branched processes, which presumably carry the photopigment. Notch is essential for two aspects of the early development of the visual system. First, it delimits the number of cells incorporated into Bolwig's organ. Second, it is required for the maintenance of the epithelial character of the optic lobe cells during and after its invagination. 相似文献
9.
10.
11.
The number of leg-bearing segments in centipedes varies extensively, between 15 and 191, and yet it is always odd. This suggests that segment generation in centipedes involves a stage with double segment periodicity and that evolutionary variation in segment number reflects the generation of these double segmental units. However, previous studies have revealed no trace of this. Here we report the expression of two genes, an odd-skipped related gene (odr1) and a caudal homolog, that serve as markers for early steps of segment formation in the geophilomorph centipede, Strigamia maritima. Dynamic expression of odr1 around the proctodaeum resolves into a series of concentric rings, revealing a pattern of double segment periodicity in overtly unsegmented tissue. Initially, the expression of the caudal homolog mirrors this double segment periodicity, but shortly before engrailed expression and overt segmentation, the intercalation of additional stripes generates a repeat with single segment periodicity. Our results provide the first clues about the causality of the unique and fascinating "all-odd" pattern of variation in centipede segment numbers and have implications for the evolution of the mechanisms of arthropod segmentation. 相似文献
12.
13.
In this paper we describe the embryonic development of the polyclad flatworm Imogine mcgrathi. Imogine is an indirect developer that hatches as a planctonic Goette’s larva after an embryonic period of approximately 7 days. Light
and electron microscopic analyses of sections of staged embryos were combined with antibody stainings of wholemounted embryos
to reconstruct the origin and movement of the primordia of the various organ systems, with particular emphasis on the nervous
system. We introduce a system of morphologically defined stages aimed at facilitating future studies and cross-species comparisons
among flatworm embryos. Imogine embryos undergo typical spiral cleavage. Micromere quartets 1–3 form an irregular double layer of mesenchymal cells that
during gastrulation expands over micromere quartet 4. Micromere 4d divides into several large mesendodermal precursors whose
position defines the ventral pole of the embryo. These cells, along with the animal micromeres that obtained a sub-surface
position during cleavage, form a deep layer of cells that gives rise to all internal structures, including the nervous system,
musculature, nephridia, and gut. Micromeres 4a–c are large yolky cells that are incorporated into the lumen of the gut, but
do not themselves contribute to the gut epithelium. Shortly after gastrulation, cell differentiation sets in. Cells located
at the surface adopt epithelial characteristics and form cilia that result in continuous movement of the post-gastrula stage
embryo. Deep cells at the lateral margins of the embryo become organized into a protonephridial tube. A cluster of approximately
50 deep cells at the anterior pole forms the brain, in which we have identified sets of founder neurons of the brain commissure
and the dorsal and ventral connectives. The early differentiating neurons, along with other cells forming stabilized microtubules
(ciliated cells of the epidermis, gut and protonephridia; apical gland cells) could be analyzed in detail because of their
labeling with an antibody against acetylated α-tubulin. Our findings indicate that, despite significant differences in the
cleavage pattern and arrangement of blastomeres in the early embryo, morphogenesis and organ formation of a polyclad embryo
follows a pattern that is very similar to the pattern observed by us and others in phylogenetically more evolved rhabdocoel
flatworms.
Received: 10 February 2000 / Accepted: 10 April 2000 相似文献
14.
J. G. E. LEWIS 《Zoological Journal of the Linnean Society》1969,48(1):49-57
African centipedes labelled Scolopendra amazonica (Buecherl) and S. morsitans L. in the collection of the British Museum (Natural History) have been examined. All are regarded, at present, as S. amazonica but in many respects S. amazonica in Africa shows greater variation than do S. amazonica and S. morsitans in India. North African populations are very distinct. 相似文献
15.
V M Barabanov 《Ontogenez》1991,22(2):175-181
This is a review of the literature and author's own data on determination of various cell types of adenohypophysis during embryonic development. Recent studies using techniques of organ culture and immunohistochemistry have established the time of determination of glandular cells of adenohypophysis. It has been shown in rat embryos that the direction of differentiation of all major cell types of adenohypophysis is programmed late during the development of the epithelial anlage of this organ. Similar data as concerns somatotropic and prolactin cells have been obtained on chick embryos. Chick embryos possess regional type of determination of prolactin and somatotropin-containing cells in the anlage in correspondence with their location in definitive adenohypophysis. 相似文献
16.
Novel approaches to bio-imaging and automated computational image processing allow the design of truly quantitative studies in developmental biology. Cell behavior, cell fate decisions, cell interactions during tissue morphogenesis, and gene expression dynamics can be analyzed in vivo for entire complex organisms and throughout embryonic development. We review state-of-the-art technology for live imaging, focusing on fluorescence light microscopy techniques for system-level investigations of animal development, and discuss computational approaches to image segmentation, cell tracking, automated data annotation, and biophysical modeling. We argue that the substantial increase in data complexity and size requires sophisticated new strategies to data analysis to exploit the enormous potential of these new resources. 相似文献
17.
J. G. E. Lewis 《Journal of Zoology》1966,149(2):188-203
The life history, reproduction, food and parasites of a population of Scolopendra amazonica Bücherl from the south bank of the Blue Nile at Khartoum, Sudan are described and discussed and Sudanese specimens are compared with Indian S. amazonica and Scolopendra morsitans. 相似文献
18.
The embryonic development of larval muscles in Drosophila 总被引:15,自引:0,他引:15
M Bate 《Development (Cambridge, England)》1990,110(3):791-804
Each of the abdominal hemisegments A2-A7 in the Drosophila larva has a stereotyped pattern of 30 muscles. The pattern is complete by 13 h after egg laying, but the development of individual muscles has begun with the definition of precursors at least by the onset of germ band shortening, some 5.5 h earlier. The earliest signs of muscle differentiation are cell fusions, which occur in the ventralmost mesoderm overlying the CNS and at stereotyped positions in the rest of the mesoderm as the germ band shortens. At the end of shortening, the pattern of muscle precursors produced by these fusions is complete. Precursors filled with dye reveal extensive fine processes probably involved initially in cell fusion and, subsequently, in navigation over the epidermis to form attachment points. The muscle pattern is formed before innervation and without cell death. Thus, neither of these processes is involved in determining the distribution of precursors. Evidence is presented for the view that the development of the larval muscle pattern in Drosophila depends on a prior segregation of founder cells at appropriate locations in the mesoderm with which other cells fuse to form the precursors. 相似文献
19.
The role of cell-surface glycoproteins in histogenesis of the embryonic rat pancreas was investigated by studying the effect of tunicamycin (TM) on in vitro development. TM has been shown to block glycosylation of asparagine residues in glycoproteins by inhibiting formation of dolichol oligosaccharide intermediates. Exposure of Day 15 pancreatic rudiments to 1.0 μg TM/ml for 15 or 24 hr inhibited [3H]mannose, [3H]glucosamine, and [3H]fucose incorporation by 95, 85, and 90%, respectively, while [3H]leucine incorporation was reduced by 35%. Similar results were obtained with Day 17 rudiments. These trends were confirmed using sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and fluorography. Inhibition of [3H]monosaccharide incorporation correlated with reduced binding of RCA I-ferritin conjugates to the cell surface and both effects of TM were reversed by reculturing rudiments in medium lacking the antibiotic. Morphologically, TM treatment resulted in a delay in pancreatic histogenesis and this delay correlated with an inhibition of the normal increase in specific activity of amylase, an acinar cell secretory protein. These effects were not mimicked by treatment with cycloheximide at a concentration which inhibited [3H]leucine incorporation to the same degree observed with TM. The percentage of delayed rudiments decreased as reculturing in the absence of TM was extended. 相似文献
20.
The evolution of segmentation of centipede trunk and appendages 总被引:1,自引:0,他引:1
A. Minelli D. Foddai L. A. Pereira J. G. E. Lewis 《Journal of Zoological Systematics and Evolutionary Research》2000,38(2):103-117
The segmentation of centipedes is interpreted in the light of a biphasic model of segmentation (holomeric plus meromeric). The mid-body anomaly (e.g. in the alternating short and long terga, or in the sequence of segments with and without spiracles) is regarded as due to an early patterning of the embryo, occurring before the onset of meromeric segmentation and affecting a level within the fourth eosegment of the trunk. Comparisons with the Diplopoda suggest that genital structures such as millipede gonopods did probably develop originally at this spot, whose position remained marked even after the transition from a putatively progoneate to the current opisthogoneate condition of centipedes, perhaps following gene duplication and divergence of expression patterns of the paralogues. A new lower limit for the number of leg-bearing segments [27, in a male specimen of Schendylops oligopus (Pereira, Minelli & Barbieri,1995)] is established for Geophilomorpha. Coevolutionary trends involving the segmentation of the trunk, the segmentation of the appendages (especially the antennae), the postembryonic developmental schedule and the presence or absence of regeneration ability supports a recent view of the appendages as evolutionarily divergent duplicates of the main body axis. 相似文献