首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
The function of ubiquitin-like protein ISG15 and protein modification by ISG15 (ISGylation) has been an enigma for many years. Recently, the research of ISGylation has been accelerated by the identification of the enzymes involved in the ISG15 conjugation process. Our previous study identified the interferon inducible protein EFP as an ISG15 isopeptide ligase (E3) for 14-3-3σ. In this study, we show that ISG15 E3 ligase EFP can be modified by ISG15. Two ubiquitin E2 conjugating enzymes, UbcH6 and UbcH8, can support ISGylation of EFP. The Ring-finger domain of EFP is important for its ISGylation. Full-length EFP can enhance the ISGylation of Ring domain deleted EFP, indicating EFP can function as an ISG15 E3 ligase for itself. We also determined the ISGylation site of EFP and created its ISGylation resistant mutant EFP-K117R. Compared to the wild-type EFP, this mutant further increases the ISGylation of 14-3-3σ. Thus we propose that autoISGylation of EFP negatively regulates its ISG15 E3 ligase activity for 14-3-3σ.  相似文献   

2.
The expression of the ubiquitin-like protein ISG15 and protein modification by ISG15 (ISGylation) are strongly activated by interferons. Accordingly, ISG15 expression and protein ISGylation are strongly activated upon viral and bacterial infections and during other stress conditions, suggesting important roles for the ISG15 system in innate immune responses. Here, we report the identification of the ubiquitin-protein isopeptide ligase (E3) EFP (estrogen-responsive finger protein) as the ISG15 E3 ligase for 14-3-3sigma protein. Like other known components of the protein ISGylation system (ISG15, UBE1L, UBP43, and UBC8), EFP is also an interferon-inducible protein. Expression of EFP small interfering RNA decreased the ISGylation of 14-3-3sigma in the 293T cell ISGylation system as well as in MCF-7 cells upon interferon treatment. Furthermore, the ISGylation enzyme activity of EFP was RING domain-dependent. These findings indicate that EFP is an ISG15 E3 ligase for 14-3-3sigma in vivo. The fact that both UBC8 and EFP are common components in the ubiquitin and ISG15 conjugation pathways suggests a mechanism whereby a limited set of enzymes accomplishes diverse post-translational modifications of their substrates in response to changes in environmental stimulations.  相似文献   

3.
Interferon‐stimulated gene 15 (ISG15), a ubiquitin‐like protein, is induced by type I INF. Although several groups have reported ISGylation of the HCV NS5A protein, it is still unclear whether ISGylation of NS5A has anti‐ or pro‐viral effects in hepatitis C virus (HCV) infection. In the present study, the role of ISGylation‐independent, unconjugated ISG15 in HCV infection was examined. Immunoprecipitation analyses revealed that ISG15 interacts specifically with NS5A domain I. ISG15 mutants lacking the C‐terminal glycine residue that is essential for ISGylation still interacted with NS5A protein. Taken together, these results suggest that unconjugated ISG15 affects the functions of HCV NS5A through protein–protein interaction.
  相似文献   

4.
The expression of the ubiquitin-like molecule ISG15 (UCRP) and protein modification by ISG15 (ISGylation) are strongly activated by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. Inducible nitric-oxide synthase (iNOS) is induced by the similar stimuli as ISG15 and enhances the production of nitric oxide (NO), a pleiotropic free radical with antipathogen activity. Here, we report that cysteine residues (Cys-76 and -143 in mouse, Cys-78 in human) of ISG15 can be modified by NO, and the NO modification of ISG15 decreases the dimerization of ISG15. The mutation of the cysteine residue of ISG15 to serine improves total ISGylation. The NO synthase inhibitor S-ethylisothiourea reduces endogenous ISGylation. Furthermore, ectopic expression of iNOS enhanced total ISGylation. Together, these results suggest that nitrosylation of ISG15 enhances target protein ISGylation. This is the first report of a relationship between ISGylation and nitrosylation.  相似文献   

5.
Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation.Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNβ promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6(-/-) mice may provide a feasible model to study the role of human HerC5 in antiviral responses.  相似文献   

6.
ISG15 (ISG15 ubiquitin-like modifier), a ubiquitin-like protein, is one of the major type I IFN (interferon) effector systems. ISG15 can be conjugated to target proteins (ISGylation) via the stepwise action of E1, E2, and E3 enzymes. Conjugated ISG15 can be removed (deISGylated) from target proteins by USP18 (ubiquitin-specific peptidase 18). Here we investigated the role of deISGylation by USP18 in regulating autophagy and EGFR degradation in cells treated with type I IFNs. We show that type I IFN induced expression of ISG15 leads to ISGylation of BECN1 at Lys117, as well as Lys263, Lys265, and Lys266 which competes with Lys63 ubiquitination of BECN1. We demonstrate that ISGylation of BECN1 at Lys117, as well as Lys263, Lys265, and Lys266 serve an important role in negative regulation of intracellular processes including autophagy and EGFR degradation that are critically dependent upon the activity of class III PtdIns 3-kinase. Our studies provide fundamental new mechanistic insights into the innate immunity response implemented by type I IFNs.  相似文献   

7.
Interferon (IFN)‐induced signalling pathways have essential functions in innate immune responses. In response to type I IFNs, filamin B tethers RAC1 and a Jun N‐terminal kinase (JNK)‐specific mitogen‐activated protein kinase (MAPK) module—MEKK1, MKK4 and JNK—and thereby promotes the activation of JNK and JNK‐mediated apoptosis. Here, we show that type I IFNs induce the conjugation of filamin B by interferon‐stimulated gene 15 (ISG15). ISGylation of filamin B led to the release of RAC1, MEKK1 and MKK4 from the scaffold protein and thus to the prevention of sequential activation of the JNK cascade. By contrast, blockade of filamin B ISGylation by substitution of Lys 2467 with arginine or by knockdown of ubiquitin‐activating enzyme E1‐like (UBEL1) prevented the release of the signalling molecules from filamin B, resulting in persistent promotion of JNK activation and JNK‐mediated apoptosis. These results indicate that filamin B ISGylation acts as a negative feedback regulatory gate for the desensitization of type I IFN‐induced JNK signalling.  相似文献   

8.
The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls), ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation). ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no reducing agent present.  相似文献   

9.
The ISG15/USP18 pathway modulates cellular functions and is important for the host innate immune response to chronic viral infections such as Hepatitis C Virus (HCV). Interferon stimulated gene 15 (ISG15) was the first ubiquitin-like protein modifier identified. As in ubiquitination, ISG15 conjugates to target proteins (ISGylation) through the sequential enzymatic action of activating E1, conjugating E2, and ligating E3 enzymes. ISGylation modulates signal transduction pathways and host anti-viral response. The ISGylation process is reversible through the action of an ISG15 protease, USP18. Ubiquitin-like specific protease 18 (USP18) has functions that are both ISG15-dependent and ISG15-independent; the importance of the ISG15/USP18 pathway to chronic HCV infection is illustrated by the consistent finding of increased levels of ISG15 and USP18 in the liver tissue of patients who do not respond to interferon-based treatments. Mechanistically, HCV seems to exploit the ISG15/USP18 pathway to promote viral replication and evade innate anti-viral immune responses.  相似文献   

10.
Protein ISGylation is unique among ubiquitin-like conjugation systems in that the expression and conjugation processes are induced by specific stimuli, mainly via the alpha/beta interferon signaling pathway. It has been suggested that protein ISGylation plays a special role in the immune response, because of its interferon-signal dependency and its appearance only in higher eukaryotic organisms. Here, we report the identification of an ISG15-conjugating enzyme, Ubc8. Like other components of the protein ISGylation system (ISG15, UBE1L, and UBP43), Ubc8 is an interferon-inducible protein. Ubc8 clearly mediates protein ISGylation in transfection assays. The reduction of Ubc8 expression by small interfering RNA causes a decrease in protein ISGylation in HeLa cells upon interferon treatment. Neither UbcH7/UbcM4, the closest homologue of Ubc8 among known ubiquitin E2s, nor the small ubiquitin-like modifier E2 Ubc9 supports protein ISGylation. These findings strongly suggest that Ubc8 is a major ISG15-conjugating enzyme responsible for protein ISGylation upon interferon stimulation. Furthermore, we established an assay system to detect ISGylated target proteins by cotransfection of ISG15, UBE1L, and Ubc8 together with a target protein to be analyzed. This method provides an easy and effective way to identify new targets for the ISGylation system and will facilitate related studies.  相似文献   

11.
The ubiquitin-like molecule ISG15 (UCRP) and protein modification by ISG15 (ISGylation) are strongly induced by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. However, how ISGylation contributes to innate immune responses is not clear. The dsRNA-dependent protein kinase (PKR) inhibits translation by phosphorylating eIF2α to exert its anti-viral effect. ISG15 and PKR are induced by interferon, suggesting that a relationship exists between ISGylation and translational regulation. Here, we report that PKR is ISGylated at lysines 69 and 159. ISG15-modified PKR is active in the absence of virus infection and phosphorylates eIF2α to down-regulate protein translation. The present study describes a novel pathway for the activation of PKR and the regulation of protein translation.  相似文献   

12.
The role of ISGylation in humans has been a long-standing question. A recent groundbreaking study by the Casanova group shows it is essential in the defence against mycobacterial disease but dispensable for other types of infection.Bogunovic et al. (2012). Science, Epub: Aug 2. DOI: 10.1126/science.1224026Our bodies use interferon (IFN) signalling as a central pathway to limit the spread of pathogens, such as viruses, bacteria and parasites. After pathogen exposure, IFN production leads to the activation of immune cells—such as natural killer cells, macrophages and T lymphocytes—which mediate pathogen clearance. There are two main types of IFN signalling, type I and II. In type I signalling, IFNs α and β—produced mainly by leukocytes and fibroblasts, respectively—stimulate macrophages and natural killer (NK) cells to initiate an antiviral response. In type II signalling, IFNγ from activated T cells and NK cells potentiate type I signalling and promote inflammation. During type I signalling IFNα and IFNβ bind to their cognate receptors, which results in the induction of IFN-stimulated genes (ISGs). A key function of ISGs is to interfere with viral replication, hence the name interferon. One of the most strongly induced ISGs is ISG15, a small protein consisting of two ubiquitin folds connected with a hinge spacer, thus resembling di-ubiquitin [1]. It has been proposed that ISGylation is antiviral in mice, but its effects on human virus infection or other functional roles have been a long-standing question in the field. A study by the Casanova group provides important new insights into the role of ISG15 in humans, showing it is essential in the defence against mycobacterial disease but dispensable for other types of infection [2].Similarly to ubiquitin, ISG15 can be conjugated to other proteins and several hundred targets have been suggested from proteomic studies [3]. However, few targets have been carefully evaluated, among them JAK1, STAT1, ERK1/2, PLCγ1, p63, PML-RARα, UBC13, filamin B and several viral proteins. In analogy to the ubiquitin system, ISG15 conjugation is mediated by an enzymatic cascade consisting of an E1 activating enzyme Ube1L, an E2 conjugating enzyme UbcH8 and a HECT-domain containing E3 ligase HERC5 (Fig 1A). Notably, both ISG15 and the E1/E2/E3 cascade are induced by type I IFN signalling.Open in a separate windowFigure 1ISGylation and its function in the antimycobacterial response. (A) The ISG15 conjugation system. ISG15 is activated by an E1 enzyme and conjugated to substrates (green) by the action of E2 and E3 enzymes. HERC5 (HERC6 in mice) is the main ISGylating E3. (B) Mycobacterial infection induces IFNα/β production, which stimulates ISG15 synthesis and secretion in granulocytes. Secreted ISG15 can then activate NK cells to produce IFNγ, which stimulates immune system cells. See text for details. (C) HERC5 has been described to bind to polysomes and to promote cotranslational ISGylation of newly synthesized proteins. EFP, oestrogen-responsive finger protein; HERC5/6, HECT and RLD domain containing E3 ubiquitin protein ligases 5/6; HHARI, human homologue of Drosophila ariadne; IFNα/β/γ;, interferon α/β/γ; IFNαR, interferon α receptor; IL-12, interleukin 12; ISG15, interferon-stimulated gene 15; Lys, lysine; mRNA, messenger RNA; NK, natural killer; TLR, Toll-like receptor; UbcH8, ubiquitin conjugating enzyme H8; Ube1L, ubiquitin activating enzyme E1-like.Knowledge of the biological functions of ISGylation comes mainly from the analysis of knockout mice for ISG15, Ube1L and from in vitro studies. ISG15−/− mice are more prone to infection by certain viruses, such as Sindbis, influenza A/B and herpes simplex 1 [4]. Ube1L−/− mice are also sensitized towards Sindbis and influenza infections [5]. Furthermore, ISG15 can inhibit the budding of certain viruses and modify viral proteins, and some viruses have developed strategies to inhibit ISGylation, underscoring the function of ISG15 and ISGylation in the antiviral response [6]. However, other viruses—such as vesicular stomatitis and lymphocytic choriomeningitis virus—have similar effects on ISG15−/− and wild-type mice [7], suggesting specialized functions of ISGylation after viral infection. In addition, a closer look at the role of ISG15 in regulating human viruses complicates the picture further: ISG15 has been found to stimulate rather than inhibit hepatitis C virus production in vitro, probably by preventing the degradation of viral proteins through competition between ISGylation and ubiquitylation [8]. Considering the limited number of viral infections common to both mice and man, it has been difficult to extrapolate what the in vivo functions of ISGylation might be in humans.The Bogunovic et al [2] study is a clear step forward in our understanding of ISG15 function in infection biology. By analysing patients with the rare paediatric syndrome, Mendelian susceptibility to mycobacterial disease (MSMD), they identified mutations in ISG15 that lead to its loss of expression and suggest that these mutations cause the disease. Importantly, these patients do not suffer from increased sensitivity to viral infections but show severe clinical symptoms when exposed to weakly pathogenic mycobacteria, such as Mycobacterium bovis.As has been shown in ISG15−/− and Ube1L−/− mice, Bogunovic et al found that cells from MSMD patients lack ISG15 expression after IFNα/β stimulation, but other ISGs are induced normally, confirming that ISG15 is not essential to elicit an IFN response [2]. Furthermore, patient cell lines are not more susceptible to infection by viruses such as herpes simplex virus, Sindbis virus and vesicular stomatitis virus. Secretion of ISG15 by granulocytes from gelatinase and secretory granules is probably an important process in response to mycobacterial infection that cannot be triggered by, for example, bacterial lipopolysaccharides (Fig 1B). Monocytes and lymphocytes are known to secrete ISG15, and Casanova and colleagues show that even transfected HEK293T cells can do so—suggesting that ISG15 is both an intracellular and a secreted protein—independently of the cellular context. The main function of secreted ISG15 seems to be the triggering of IFNγ release, preferentially from NK cells, but also from T cells. Interestingly, IFNγ secretion is also stimulated by modified ISG15 that can no longer be conjugated to target proteins. This indicates that immune cells either have an ISG15 receptor or that secreted ISG15, which is endocytosed, can induce a response without being conjugated to an intracellular target. Importantly, ISG15 secretion is lost in cells from MSMD patients and, consistently, MSMD leukocytes stimulated with mycobacteria produce greatly reduced amounts of IFNγ, which can be restored by providing recombinant ISG15. In addition, the study also demonstrates that ISG15−/− mice are more susceptible to mycobacterial infection than their wild-type littermates.Thus, the Bogunovic study identifies a common function of ISG15 in vertebrates: the ability to counteract mycobacterial infections by activating NK cells. The data also suggest that some viruses and bacteria must share pathogen-associated molecular patterns that resemble those of mycobacteria, thus initiating a similar response that involves IFNα/β, which is required for ISG15 induction. The initial activation of this mechanism by mycobacteria remains to be identified and seems to be complex, as treatment of macrophages with IFNα/β during mycobacterial infection has been shown to induce the loss of their mycobacteriostatic properties [9]; partly at odds with the conclusions from this study. These discrepancies notwithstanding, the new insights reveal an essential function for ISG15 in antimycobacterial signalling. Mycobacterial infections are hard to fight and thus the finding that ISG15 is a major effector between granulocytes and NK cells might help develop new treatment strategies. Other cellular mediators, such as the macrophage–T-cell pathway, are a crucial host defence against pathogenic (M. tuberculosis) and nonpathogenic mycobacteria (M. bovis), as well as salmonella, in other variants of MSMD. Hence, Casanova and colleagues speculate that the granulocyte–NK-cell pathway, which involves ISG15 and IFNγ, might constitute a more innate complement to the macrophage–T-cell pathway, which requires IL-12/IFNγ. However, they also report a synergistic effect of a combined treatment of cells with ISG15 and IL-12, which rather argues that the granulocyte–NK-cell and the macrophage–T-cell systems act together. Furthermore, both granulocytes and macrophages express Toll-like receptors (TLRs) that recognize mycobacterial structures—such as TLR2 for the lipomannan of M. tuberculosis.Finally, whether covalent modification of target proteins within cells by ISG15 is important during infection remains unclear. It is difficult to speculate what the main effects would be, as ISG15 modifies targets in diverse cellular pathways. Notably, the E3 ligase for ISG15 conjugation HERC5 has been shown to be associated physically with polysomes, leading to cotranslational ISGylation of newly synthesized proteins, which probably inhibits protein function in general (Fig 1C; [10]). Thus, ISG15 might have two roles in preparing cells to fight pathogens: intracellular proteome remodelling and initiating antimicrobial signalling pathways. It will be interesting to see if and how these functions intersect.  相似文献   

13.
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein, consisting of two ubiquitin-like domains. ISG15 is synthesized as a precursor in certain mammals and, therefore, needs to be processed to expose the C-terminal glycine residue before conjugation to target proteins. A set of three-step cascade enzymes, an E1 enzyme (UBE1L), an E2 enzyme (UbcH8), and one of several E3 ligases (e.g., EFP and HERC5), catalyzes ISG15 conjugation (ISGylation) of a specific protein. These enzymes are unique among the cascade enzymes for ubiquitin and other ubiquitin-like proteins in that all of them are induced by type I IFNs or other stimuli, such as exposure to viruses and lipopolysaccharide. Mass spectrometric analysis has led to the identification of several hundreds of candidate proteins that can be conjugated by ISG15. Some of them are type I IFN-induced proteins, such as PKR and RIG-I, and some are the key regulators that are involved in IFN signaling, such as JAK1 and STAT1, implicating the role of ISG15 and its conjugates in type I IFN-mediated innate immune responses. However, relatively little is known about the functional significance of ISG15 induction due to the lack of information on the consequences of its conjugation to target proteins. Here, we describe the recent progress made in exploring the biological function of ISG15 and its reversible modification of target proteins and thus in their implication in immune diseases.  相似文献   

14.
ISG15, a protein containing two ubiquitin-like domains, is an interferon-stimulated gene product that functions in antiviral response and is conjugated to various cellular proteins (ISGylation) upon interferon stimulation. ISGylation occurs via a pathway similar to the pathway for ubiquitination that requires the sequential action of E1/E2/E3: the E1 (UBE1L), E2 (UbcH8), and E3 (Efp/Herc5) enzymes for ISGylation have been hitherto identified. In this study, we identified six novel candidate target proteins for ISGylation by a proteomic approach. Four candidate target proteins were demonstrated to be ISGylated in UBE1L- and UbcH8-dependent manners, and ISGylation of the respective target proteins was stimulated by Herc5. In addition, Herc5 was capable of binding with the respective target proteins. Thus, these results suggest that Herc5 functions as a general E3 ligase for protein ISGylation.  相似文献   

15.
ISG15(Interferon stimulated gene 15,ISG15)蛋白是由干扰素诱导产生的一种泛素样蛋白分子,分子量大小约为15kD。ISG15同泛素分子相类似可以被共价结合于其他蛋白分子上,这种现象称为ISG化(ISGylation)现象。ISG化系统包括ISG15、UBE1L、UBCH8和HERC5四类蛋白分子,协同完成ISG化过程。ISG15及ISG化系统在抗病毒反应中具有重要作用。近几年对于ISG15的抗病毒作用和机制的研究已经有了很大的突破,ISG15的抗病毒作用也越来越受到人们重视,了解清楚ISG15抗病毒机制对于研制新的抗病毒药物及提出新的抗病毒策略具有重要意义。本文对ISG15在不同种病毒中的抗病毒机制研究进展进行了简要综述。  相似文献   

16.
Conjugation of ISG15 inhibits replication of several viruses. Here, using an expression system for assaying human and mouse ISG15 conjugations (ISGylations), we have demonstrated that vaccinia virus E3 protein binds and antagonizes human and mouse ISG15 modification. To study ISGylation importance in poxvirus infection, we used a mouse model that expresses deconjugating proteases. Our results indicate that ISGylation restricts in vitro replication of the vaccinia virus VVΔE3L mutant but unconjugated ISG15 is crucial to counteract the inflammatory response produced after VVΔE3L infection.  相似文献   

17.
The tripartite motif-containing protein 21 (TRIM21) plays important roles in autophagy and innate immunity. Here, we found that HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5), as an interferon-stimulated gene 15 (ISG15) E3 ligase, catalyzes the ISGylation of TRIM21 at the Lys260 and Lys279 residues. Moreover, IFN-β also induces TRIM21 ISGylation at multiple lysine residues, thereby enhancing its E3 ligase activity for K63-linkage-specific ubiquitination and resulting in increased levels of TRIM21 and p62 K63-linked ubiquitination. The K63-linked ubiquitination of p62 at Lys7 prevents its self-oligomerization and targeting to the autophagosome. Taken together, our study suggests that the ISGylation of TRIM21 plays a vital role in regulating self-oligomerization and localization of p62 in the autophagy induced by IFN-β.Subject terms: Proteins, Autophagy, Innate immunity, Post-translational modifications  相似文献   

18.
ISG15 (interferon-stimulated gene 15) is a novel ubiquitin-like (UbL) modifier with two UbL domains in its architecture. We investigated different roles for the two UbL domains in protein modification by ISG15 (ISGylation) and the impact of Influenza B virus NS1 protein (NS1B) on regulation of the pathway. The results show that, although the C-terminal domain is sufficient to link ISG15 to UBE1L and UbcH8, the N-terminal domain is dispensable in the activation and transthiolation steps but required for efficient E3-mediated transfer of ISG15 from UbcH8 to its substrates. NS1B specifically binds to the N-terminal domain of ISG15 but does not affect ISG15 linkage via a thioester bond to its activating and conjugating enzymes. However, it does inhibit the formation of cellular ISG15 conjugates upon interferon treatment. We propose that the N-terminal UbL domain of ISG15 mainly functions in the ligation step and NS1B inhibits ISGylation by competing with E3 ligases for binding to the N-terminal domain.  相似文献   

19.
ISGylation, an ubiquitin-like post-translational modification by ISG15, has been reported to participate in the interferon (IFN)-mediated antiviral response. In this study, we analyzed the functional role of ISGylation in dengue virus 2 (DENV-2) replication. Overexpression of ISG15 was found to significantly suppress the amount of extracellular infectious virus released, while intracellular viral RNA was unaffected. This effect was not observed with a conjugation-defective ISG15 mutant. In addition, extracellular virus infectivity was decreased by ISG15 overexpression. To further clarify the role of ISGylation in the anti-DENV-2 response, we depleted endogenous ISG15 by RNA interference and analyzed the virus production in the absence or presence of type-I IFN. Results showed a significant reduction in extracellular DENV-2 RNA levels for cells treated with IFN, and that these DENV-2 RNA levels could be partially restored by the ISG15 knockdown. Among various DENV-2 proteins, NS3 and NS5 were subjected to the ISGylation. These results demonstrate that IFN-inducible ISGylation suppresses DENV-2 particle release, and that ISG15 is one of the mediators of IFN-induced inhibition of DENV-2 replication. ISG15 therefore functions as a host antiviral factor against DENV-2 infection.  相似文献   

20.
干扰素刺激基因15(ISG15)编码的蛋白是抗病毒天然免疫通路中的重要调节因子,病毒感染和干扰素刺激均可强烈诱导ISG15的表达。ISG15是最早发现的泛素样蛋白,可对细胞内多种蛋白进行修饰并调节蛋白功能,但不介导蛋白质的降解,在机体抗病毒天然免疫反应中发挥重要作用,其机制尚未完全明确。近几年对ISG15的研究有所突破,发现了ISG15在抗病毒天然免疫反应中的新功能。我们简要概述了泛素样蛋白ISG15的概况、修饰酶系统及ISG15在抗病毒天然免疫反应中功能的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号