首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily consists of proteins containing the BAR domain, the extended FCH (EFC)/FCH-BAR (F-BAR) domain, or the IRSp53-MIM homology domain (IMD)/inverse BAR (I-BAR) domain. These domains bind membranes through electrostatic interactions between the negative charges of the membranes and the positive charges on the structural surface of homo-dimeric BAR domain superfamily members. Some BAR superfamily members have membrane-penetrating insertion loops, which also contribute to the membrane binding by the proteins. The membrane-binding surface of each BAR domain superfamily member has its own unique curvature that governs or senses the curvature of the membrane for BAR-domain binding. The wide range of BAR-domain surface curvatures correlates with the various invaginations and protrusions of cells. Therefore, each BAR domain superfamily member may generate and recognize the curvature of the membrane of each subcellular structure, such as clathrin-coated pits or filopodia. The BAR domain superfamily proteins may regulate their own catalytic activity or that of their binding proteins, depending on the membrane curvature of their corresponding subcellular structures.  相似文献   

2.
The expression for the isotropic membrane bending energy was generalized for the case of a multicomponent membrane where the membrane constituents (single molecules or small complexes of molecules-membrane inclusions) were assumed to be anisotropic. Using this generalized expression for the membrane energy it was shown that the change of intrinsic shape of membrane components may induce first-order-like shape transitions leading to the formation of a membrane neck. The predicted discontinuous membrane shape transition and the concomitant lateral segregation of membrane components were applied to study membrane budding. Based on the results presented we conclude that the budding process might be driven by accumulation of anisotropic membrane components in the necks connecting the bud and the parent membrane, and by accumulation of isotropic (conical) membrane components on the bud. Both processes may strongly depend on the intrinsic shape of membrane components and on the direct interactions between them.  相似文献   

3.
4.
5.
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.  相似文献   

6.
Voeltz GK  Prinz WA  Shibata Y  Rist JM  Rapoport TA 《Cell》2006,124(3):573-586
How is the characteristic shape of a membrane bound organelle achieved? We have used an in vitro system to address the mechanism by which the tubular network of the endoplasmic reticulum (ER) is generated and maintained. Based on the inhibitory effect of sulfhydryl reagents and antibodies, network formation in vitro requires the integral membrane protein Rtn4a/NogoA, a member of the ubiquitous reticulon family. Both in yeast and mammalian cells, the reticulons are largely restricted to the tubular ER and are excluded from the continuous sheets of the nuclear envelope and peripheral ER. Upon overexpression, the reticulons form tubular membrane structures. The reticulons interact with DP1/Yop1p, a conserved integral membrane protein that also localizes to the tubular ER. These proteins share an unusual hairpin topology in the membrane. The simultaneous absence of the reticulons and Yop1p in S. cerevisiae results in disrupted tubular ER. We propose that these "morphogenic" proteins partition into and stabilize highly curved ER membrane tubules.  相似文献   

7.
Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.  相似文献   

8.
9.
Transmembrane transporters are responsible for maintaining a correct internal cellular environment. The inherent flexibility of transporters together with their hydrophobic environment means that they are challenging to study in vitro, but recently significant progress been made. This review will focus on in vitro stability and folding studies of transmembrane alpha helical transporters, including reversible folding systems and thermal denaturation. The successful re-assembly of a small number of ATP binding cassette transporters is also described as this is a significant step forward in terms of understanding the folding and assembly of these more complex, multi-subunit proteins. The studies on transporters discussed here represent substantial advances for membrane protein studies as well as for research into protein folding. The work demonstrates that large flexible hydrophobic proteins are within reach of in vitro folding studies, thus holding promise for furthering knowledge on the structure, function and biogenesis of ubiquitous membrane transporter families. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

10.
BAR (bin, amphiphysin and Rvs161/167) domains are a unique class of dimerization domains, whose dimerization interface is edged by a membrane-binding surface. In its dimeric form, the membrane-binding interface is concave, and this gives the ability to bind better to curved membranes, i.e. to sense membrane curvature. When present at higher concentrations, the domain can stabilize membrane curvature, generating lipid tubules. This domain is found in many contexts in a wide variety of proteins, where the dimerization and membrane-binding function of this domain is likely to have a profound effect on protein activity. If these proteins function as predicted, then there will be membrane subdomains based on curvature, and thus there is an additional layer of compartmentalization on membranes. These and other possible functions of the BAR domain are discussed.  相似文献   

11.
12.
Summary The ontogeny and distribution of immunoreactive motilin and secretin were studied in the gastro-entero-pancreatic (GEP) system of human fetuses, aged 5–24 weeks, using an indirect immunocytochemical method. Several controls to check for the specificity of the immunoperoxidase staining were performed. The first motilin- and secretin-containing cells were observed in the duodenal and jejunal mucosa in fetuses at a gestational age of 16 weeks. These immunoreactive cells were located in the glands of Lieberkühn and in the villi. No immunoreactive cells were present in the oxyntic and pyloric mucosa, ileum, colon and endocrine pancreas. These observations indicate that the motilin- and secretin-containing cells detected by our antisera appear (i) in the same organs of the fetus where they are also detectable in the adult, and (ii) after the completion of histogenesis of the gastro-entero-pancreatic (GEP) system.  相似文献   

13.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

14.
Integral membrane proteins are involved in a wide range of essential biological functions and the determination of their three-dimensional structures plays a central role in understanding their function. This review focuses on the structures of one class of integral membrane proteins: the functionally diverse all-alpha type membrane proteins. It gives an overview of all the structures determined by X-ray crystallography, describing each system and structure in turn. It shows that the structures of all-alpha type membrane proteins have made valuable contributions to understanding structure–function relationships in membrane proteins. These range from the first insights into the function of exciting individual proteins to an in-depth knowledge of protein function from entire biological systems.  相似文献   

15.
Abstract

Membrane proteins represent up to 30% of the proteins in all organisms, they are involved in many biological processes and are the molecular targets for around 50% of validated drugs. Despite this, membrane proteins represent less than 1% of all high-resolution protein structures due to various challenges associated with applying the main biophysical techniques used for protein structure determination. Recent years have seen an explosion in the number of high-resolution structures of membrane proteins determined by NMR spectroscopy, especially for those with multiple transmembrane-spanning segments. This is a review of the structures of polytopic integral membrane proteins determined by NMR spectroscopy up to the end of the year 2010, which includes both β-barrel and α-helical proteins from a number of different organisms and with a range in types of function. It also considers the challenges associated with performing structural studies by NMR spectroscopy on membrane proteins and how some of these have been overcome, along with its exciting potential for contributing new knowledge about the molecular mechanisms of membrane proteins, their roles in human disease, and for assisting drug design.  相似文献   

16.
Membrane proteins represent up to 30% of the proteins in all organisms, they are involved in many biological processes and are the molecular targets for around 50% of validated drugs. Despite this, membrane proteins represent less than 1% of all high-resolution protein structures due to various challenges associated with applying the main biophysical techniques used for protein structure determination. Recent years have seen an explosion in the number of high-resolution structures of membrane proteins determined by NMR spectroscopy, especially for those with multiple transmembrane-spanning segments. This is a review of the structures of polytopic integral membrane proteins determined by NMR spectroscopy up to the end of the year 2010, which includes both β-barrel and α-helical proteins from a number of different organisms and with a range in types of function. It also considers the challenges associated with performing structural studies by NMR spectroscopy on membrane proteins and how some of these have been overcome, along with its exciting potential for contributing new knowledge about the molecular mechanisms of membrane proteins, their roles in human disease, and for assisting drug design.  相似文献   

17.
Remodeling of the membrane and cytoskeleton is involved in a wide range of normal and pathologic cellular function. These are complex, highly-coordinated biochemical and biophysical processes involving dozens of proteins. Serving as a scaffold for a variety of proteins and possessing a domain that interacts with plasma membranes, the BAR family of proteins contribute to a range of cellular functions characterized by membrane and cytoskeletal remodeling. There are several subgroups of BAR proteins: BAR, N-BAR, I-BAR, and F-BAR. They differ in their ability to induce angles of membrane curvature and in their recruitment of effector proteins. Evidence is accumulating that BAR proteins contribute to cancer cell invasion, T cell trafficking, phagocytosis, and platelet production. In this review, we discuss the physiological function of BAR proteins and discuss how they contribute to blood and cancer disorders.  相似文献   

18.
The position independent dipole membrane proteins need to be oriented in the membrane in order to function as channels, transporters or recognition systems. Membrane proteins can be broadly classified as either predominantly alpha helical or beta barrel in nature. All the different types of thirteen beta barrel membrane proteins (2OMF, 2POR, 1PRN, 1PHO, 1IIV, 1AF6, 1AOT, 2MPR, 1OSM, 1QJ8, 1BXW, 2FCP and 1FEP) and six alpha helical membrane proteins (1BL8, 1MSL, 1QLB, 1AR1, 1PSS and 1QHJ) from the Protein Data Bank were analyzed. Dipole moment was calculated for both classes of proteins. In all the oligomers, the orientation of the dipole was found to be parallel to direction of insertion that is perpendicular to the possible membrane layer. Monomers do not show a similar orientation. In all the alpha helical oligomers, the dipole points from the intra-cellular to the extra-cellular side. In the oligomeric beta barrel proteins, the direction of the dipole is from the extra-cellular to the intra-cellular side, except for OmpF from E.coli, Omp36 from Klebsiella pneumonia and LamB from E.coli where the situation is reversed. However, the dipole moments of the monomeric proteins and the monomers of the oligomers themselves are not oriented parallel to the molecular axis and the insertion orientation, but they are almost parallel to the membrane surface. It is possible that the quaternary oligomeric association is necessary for the correct orientation in the membrane and this is aided by the dipole orientation. The electrostatic potential surface calculated with all atoms, which also do not show clear separation of charge surfaces. Calculations suggest that backbone structure and oligomer are sufficient for providing the dipole orientation.  相似文献   

19.
Tubules and vesicles are membrane carriers involved in traffic along the endocytic and secretory routes. The small GTPase Arf6 regulates a recycling branch of short dynamic tubular intermediates used by major histocompatibility class I (MHC-I) molecules to traffic through vesicles between endosomes and the plasma membrane. We observed that Arf6 also affects a second network of very long and stable tubules containing MHC-I, many of which correspond to deep invaginations of the plasma membrane. Treatment with wortmannin, an inhibitor of phosphatidylinositol-3-phosphate kinase, prevents formation of the short dynamic tubules while increasing the number of the long and very stable ones. Expression of NefAAAA, a mutant form of HIV Nef, increases the number of cells containing the stable tubules, and is used here as a tool to facilitate their study. Photoactivation of NefAAAA-PA-GFP demonstrates that this molecule traffics from endosomes to the tubules. Finally, live-cell imaging also shows internalization of MHC-I molecules into these tubules, suggesting that this is an additional route for MHC-I traffic.  相似文献   

20.
The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as “molecular information” to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号