首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulsatile flow dynamics through bileaflet (St Jude and Duromedics), tilting disc (Bjork-Shiley and Omniscience), caged ball (Starr-Edwards), pericardial (Edwards) and porcine (Carpentier-Edwards) mitral valves in a model human left ventricle (LV) were studied. The model human ventricle, obtained from an in situ diastolic casting, was incorporated into a mock circulatory system. Measurements were made at various heart rates and flow rates. These included the transvalvular pressure drop and regurgitation in percent and cm3 beat-1. The effect of valve geometry and the orientation of the valve with respect to the valve annulus was analyzed using a flow visualization technique. Qualitative flow visualization study indicates certain preferred orientations for the tilting disc and bileaflet valve prostheses in order to obtain a smooth washout of flow in the LV chamber.  相似文献   

2.
Mitral effective regurgitant orifice area (EROA) using the flow convergence (FC) method is used to quantify the severity of mitral regurgitation (MR). However, it is challenging and prone to interobserver variability in complex valvular pathology. We hypothesized that real-time three-dimensional (3D) transesophageal echocardiography (RT3D TEE) derived anatomic regurgitant orifice area (AROA) can be a reasonable adjunct, irrespective of valvular geometry. Our goals were to 1) to determine the regurgitant orifice morphology and distance suitable for FC measurement using 3D computational flow dynamics and finite element analysis (FEA), and (2) to measure AROA from RT3D TEE and compare it with 2D FC derived EROA measurements. We studied 61 patients. EROA was calculated from 2D TEE images using the 2D-FC technique, and AROA was obtained from zoomed RT3DE TEE acquisitions using prototype software. 3D computational fluid dynamics by FEA were applied to 3D TEE images to determine the effects of mitral valve (MV) orifice geometry on FC pattern. 3D FEA analysis revealed that a central regurgitant orifice is suitable for FC measurements at an optimal distance from the orifice but complex MV orifice resulting in eccentric jets yielded nonaxisymmetric isovelocity contours close to the orifice where the assumptions underlying FC are problematic. EROA and AROA measurements correlated well (r = 0.81) with a nonsignificant bias. However, in patients with eccentric MR, the bias was larger than in central MR. Intermeasurement variability was higher for the 2D FC technique than for RT3DE-based measurements. With its superior reproducibility, 3D analysis of the AROA is a useful alternative to quantify MR when 2D FC measurements are challenging.  相似文献   

3.
Early detection and accurate estimation of COA severity are the most important predictors of successful long-term outcome. However, current clinical parameters used for the evaluation of the severity of COA have several limitations and are flow dependent. The objectives of this study are to evaluate the limitations of current existing parameters for the evaluation of the severity of coarctation of the aorta (COA) and suggest two new parameters: COA Doppler velocity index and COA effective orifice area. Three different severities of COAs were tested in a mock flow circulation model under various flow conditions and in the presence of normal and stenotic aortic valves. Catheter trans-COA pressure gradients and Doppler echocardiographic trans-COA pressure gradients were evaluated. COA Doppler velocity index was defined as the ratio of pre-COA to post-COA peak velocities measured by Doppler echocardiography. COA Doppler effective orifice area was determined using continuity equation. The results show that peak-to-peak trans-COA pressure gradient significantly increased with flow rate (from 83% to 85%). Peak Doppler pressure gradient also significantly increased with flow rate (80-85%). A stenotic or bicuspid aortic valve increased peak Doppler pressure gradient by 20-50% for a COA severity of 75%. Both COA Doppler velocity index and COA effective orifice area did not demonstrate significant flow dependence or dependence upon aortic valve condition. As a conclusion, COA Doppler velocity index and COA effective orifice area are flow independent and do not depend on aortic valve conditions. They can, then, more accurately predict the severity of COA.  相似文献   

4.
This work presents a numerical simulation of intraventricular flow after the implantation of a bileaflet mechanical heart valve at the mitral position. The left ventricle was simplified conceptually as a truncated prolate spheroid and its motion was prescribed based on that of a healthy subject. The rigid leaflet rotation was driven by the transmitral flow and hence the leaflet dynamics were solved using fluid-structure interaction approach. The simulation results showed that the bileaflet mechanical heart valve at the mitral position behaved similarly to that at the aortic position. Sudden area expansion near the aortic root initiated a clockwise anterior vortex, and the continuous injection of flow through the orifice resulted in further growth of the anterior vortex during diastole, which dominated the intraventricular flow. This flow feature is beneficial to preserving the flow momentum and redirecting the blood flow towards the aortic valve. To the best of our knowledge, this is the first attempt to numerically model intraventricular flow with the mechanical heart valve incorporated at the mitral position using a fluid-structure interaction approach. This study facilitates future patient-specific studies.  相似文献   

5.
Edge-to-edge technique is a surgical procedure for the correction of mitral valve leaflets prolapse by suturing the edge of the prolapsed leaflet to the free edge of the opposing one. Suture presence modifies valve mechanical behavior and orifice flow area in the diastolic phase, when the valve opens and blood flows into the ventricle. In the present work, in order to support identification of potentially critical conditions, a computational procedure is described to evaluate the effects of changing suture length and position in combination with valve size and shape. The procedure is based on finite element method analyses applied to a range of different mitral valves, investigating for each configuration the influence of repair on functional parameters, such as mitral valve orifice area and transvalvular pressure gradient, and on structural parameters, such as stress in the leaflets and stitch tension. This kind of prediction would ideally require a coupled fluid-structural analysis, where the interactions between blood flows and mitral apparatus deformation are simultaneously considered. In the present study, however, an alternative approach is proposed, in which results obtained by purely structural finite element analyses are elaborated and interpreted taking into account the Bernoulli type equations available in literature to describe blood flow through mitral orifice. In this way, the effects of each parameter in terms of orifice flow area, suture loads, and leaflets stresses can be expressed as functions of atrioventricular pressure gradient and then correlated to blood flow rate. Results obtained by using this procedure for different configurations are finally discussed.  相似文献   

6.
To evaluate the efficacy of implanting a tilting disc aortic valve prosthesis in an angulated (wedged) supra-annular position, an in vitro experimental study was performed. The aortic valve prosthesis was mounted in an axi-symmetric valve chamber in a wedged position and incorporated in a mock circulatory system. Measurements were obtained on the transvalvular pressure gradient, percent regurgitation as well as velocity profiles and turbulent normal stresses distal to the valve. Our results showed that there was no significant reduction in the pressure gradient in mounting a larger sized valve in the wedged supra-annular position. On the other hand, the percent regurgitation increased with increase in heart rate and wedge angle. The valve failed to function properly above 110 beats min-1 at any wedge angle with the normal flow rate. The velocity profiles also showed significant changes with an increase in the turbulent normal stress with increase in wedge angle. Hence our study suggests that implanting the tilting disc prosthesis in a wedged supra-annular position in the aorta is not advisable.  相似文献   

7.

This paper aims to investigate detailed mechanical interactions between the pulmonary haemodynamics and left heart function in pathophysiological situations (e.g. atrial fibrillation and acute mitral regurgitation). This is achieved by developing a complex computational framework for a coupled pulmonary circulation, left atrium and mitral valve model. The left atrium and mitral valve are modelled with physiologically realistic three-dimensional geometries, fibre-reinforced hyperelastic materials and fluid–structure interaction, and the pulmonary vessels are modelled as one-dimensional network ended with structured trees, with specified vessel geometries and wall material properties. This new coupled model reveals some interesting results which could be of diagnostic values. For example, the wave propagation through the pulmonary vasculature can lead to different arrival times for the second systolic flow wave (S2 wave) among the pulmonary veins, forming vortex rings inside the left atrium. In the case of acute mitral regurgitation, the left atrium experiences an increased energy dissipation and pressure elevation. The pulmonary veins can experience increased wave intensities, reversal flow during systole and increased early-diastolic flow wave (D wave), which in turn causes an additional flow wave across the mitral valve (L wave), as well as a reversal flow at the left atrial appendage orifice. In the case of atrial fibrillation, we show that the loss of active contraction is associated with a slower flow inside the left atrial appendage and disappearances of the late-diastole atrial reversal wave (AR wave) and the first systolic wave (S1 wave) in pulmonary veins. The haemodynamic changes along the pulmonary vessel trees on different scales from microscopic vessels to the main pulmonary artery can all be captured in this model. The work promises a potential in quantifying disease progression and medical treatments of various pulmonary diseases such as the pulmonary hypertension due to a left heart dysfunction.

  相似文献   

8.
Current artificial heart valves either have limited lifespan or require the recipient to be on permanent anticoagulation therapy. In this paper, effort is made to assess a newly developed bileaflet valve prosthesis made of synthetic flexible leaflet materials, whose geometry and material properties are based on those of the native mitral valve, with a view to providing superior options for mitral valve replacement. Computational analysis is employed to evaluate the geometric and material design of the valve, by investigation of its mechanical behaviour and unsteady flow characteristics. The immersed boundary (IB) method is used for the dynamic modelling of the large deformation of the valve leaflets and the fluid-structure interactions. The IB simulation is first validated for the aortic prosthesis subjected to a hydrostatic loading. The predicted displacement fields by IB are compared with those obtained using ANSYS, as well as with experimental measurements. Good quantitative agreement is obtained. Moreover, known failure regions of aortic prostheses are identified. The dynamic behaviour of the valve designs is then simulated under four physiological pulsatile flows. Experimental pressure gradients for opening and closure of the valves are in good agreement with IB predictions for all flow rates for both aortic and mitral designs. Importantly, the simulations predicted improved physiological haemodynamics for the novel mitral design. Limitation of the current IB model is also discussed. We conclude that the IB model can be developed to be an extremely effective dynamic simulation tool to aid prosthesis design.  相似文献   

9.
New computational techniques providing more accurate representation of human heart pathologies could help uncovering relevant physical phenomena and improve the outcome of medical therapies. In this framework, the present work describes an efficient computational model for the evaluation of the ventricular flow alteration in presence of mitral valve stenosis. The model is based on the direct numerical simulation of the Navier–Stokes equations two-way coupled with a structural solver for the left ventricle and mitral valve dynamics. The presence of mitral valve stenosis is mimicked by a single-parameter constraint acting on the kinematics of the mitral leaflets.Four different degrees of mitral valve stenosis are considered focusing on the hemodynamic alterations occurring in pathologic conditions. The mitral jet, generated during diastole, is seen to shrink and strengthen when the stenosis gets more severe. As a consequence, the kinetic energy of the flow, the tissues shear stresses, the transvalvular pressure drop and mitral regurgitation increase. It results that, as the stenosis severity level increases, the geometric and effective orifice areas decrease up to 50% with respect the normal case due to the reduced leaflets mobility and stronger blood acceleration during the diastolic phase. The modified intraventricular hemodynamics is also related to a stronger pressure gradient that, for severe stenosis, can be more than ten times larger than the healthy valve case. These computational results are fully consistent with the available clinical literature and open the way to the virtual assessment of surgical procedures and to the evaluation of prosthetic devices.  相似文献   

10.
11.
Hemolysis and thrombosis are among the most detrimental effects associated with mechanical heart valves. The strength and structure of the flows generated by the closure of mechanical heart valves can be correlated with the extent of blood damage. In this in vitro study, a tilting disk mechanical heart valve has been modified to measure the flow created within the valve housing during the closing phase. This is the first study to focus on the region just upstream of the mitral valve occluder during this part of the cardiac cycle, where cavitation is known to occur and blood damage is most severe. Closure of the tilting disk valve was studied in a "single shot" chamber driven by a pneumatic pump. Laser Doppler velocimetry was used to measure all three velocity components over a 30 ms period encompassing the initial valve impact and rebound. An acrylic window placed in the housing enabled us to make flow measurements as close as 200 microm away from the closed occluder. Velocity profiles reveal the development of an atrial vortex on the major orifice side of the valve shed off the tip of the leaflet. The vortex strength makes this region susceptible to cavitation. Mean and maximum axial velocities as high as 7 ms and 20 ms were recorded, respectively. At closure, peak wall shear rates of 80,000 s(-1) were calculated close to the valve tip. The region of the flow examined here has been identified as a likely location of hemolysis and thrombosis in tilting disk valves. The results of this first comprehensive study measuring the flow within the housing of a tilting disk valve may be helpful in minimizing the extent of blood damage through the combined efforts of experimental and computational fluid dynamics to improve mechanical heart valve designs.  相似文献   

12.
The most common objective assessments of mitral regurgitation are limited by their invasive or semiquantitative nature. Recent attempts at correlation with jet size from Doppler flow maps have failed to produce a direct measure of regurgitant volume and are fundamentally limited by the dependence of jet dimensions on factors other than flow volume. The purpose of this paper was to develop an equation, based on the physics of turbulent regurgitant jets, for calculating regurgitant volume from quantities that can be measured by Doppler ultrasound. The result is an equation forw flow rate Q as a function of orifice velocity Uo, a downstream centerline velocity Um and the intervening distance chi: Q = pi U2m chi 2/160Uo. This equation can also be modified to obtain total regurgitant volume in clinical pulsatile flow. The assumptions made demand a free turbulent jet for which momentum is conserved, but should otherwise be physiologically applicable. The advantage of this technique compared to correlations with jet size are its theoretical justification and ability to quantify regurgitant volume directly.  相似文献   

13.
A nonlinear differential equation describing the Doppler velocity profile for blood flow through the mitral valve has been derived. This equation is based on fluid dynamics and a simple, but comprehensive model of atrial and ventricular mechanics. A numerical solution to the equation is described and provides excellent agreement with Doppler velocity curves obtained clinically. One important result of the theory is that in patients with mitral stenosis, the slope of the clinically observed straight-line descent of the velocity profile is proportional to the mitral orifice area and inversely proportional to the atrioventricular compliance.  相似文献   

14.
A probe for production and measurement of acute mitral regurgitation in dogs is described. It consists of a tube that is introduced into the mitral valve through the left atrial appendage. Regurgitant flow through the tube is measured by an electromagnetic device. Variation of flow and zero flow are achieved by narrowing or occluding the tube with a rubber cuff. In animals weighing 30-50 kg, the probe does not produce significant mitral stenosis and the mitral leaflets fit closely around the probe during ventricular systole. The instantaneous relationship between mitral regurgitant flow (MRF) and the gradient between left ventricular and left atrial pressure shows a marked delay of MRF at the beginning and end of regurgitation. This delay can be attributed to some extent to electrical phase lag and to the small movement of the probe relative to the mitral valve during the cardiac cycle. Measurement of regurgitant stroke volume is affected by this movement only to a small extent.  相似文献   

15.
The spectral Doppler mitral flow pattern, alone or combined with tissue Doppler mitral annulus velocity, can be used to predict left ventricular (LV) filling pressure in humans, whereas invasive hemodynamic measurements are still required in the rat. This study was undertaken to assess whether LV end-diastolic pressure (LVEDP) can be estimated using Doppler echocardiography in the rat after myocardial infarction (MI). Thirty-seven rats (23 rats with MI after left coronary artery ligation and 14 sham-operated rats) were evaluated 3 mo after surgery with echo-Doppler and invasive hemodynamic measurements. Pulse wave spectral Doppler at the mitral valve tip was used to measure the E wave, the E wave deceleration time (DT), and the A wave; spectral Doppler tissue imaging was used to measure the early diastolic lateral mitral annulus velocity (E(a)). We found weak correlations between LVEDP and the peak velocity of the early mitral inflow (E), E/peak velocity of the late mitral inflow, and DT, and strong correlations with E(a) and especially with E/E(a) [R(2) = 0.89, LVEDP (in mmHg) = 0.987E/E(a) - 4.229]. Longitudinal followup of a subgroup of rats with MI revealed a marked rise of E/E(a) between days 7 and 21 in rats with heart failure only. We conclude that Doppler echocardiography can be used for serial assessment of LV diastolic function in rats with MI.  相似文献   

16.
Stresses in the closed mitral valve: a model study   总被引:2,自引:1,他引:1  
In the present model study on the closed mitral valve, tensile force in the chordae tendineae is related to transvalvular pressure using a mathematical model of mechanics of the closed mitral valve. Circumferential stress as well as bending stress in the valve leaflets were neglected. Without precisely knowing the mechanical properties of the leaflet material, geometry of the leaflets was estimated by applying Laplace's law, which relates leaflet stress to leaflet curvature. Independent of shape of the mitral valve orifice, under all circumstances tensile force in the chordae tendineae was calculated to be equal or greater than half the force exerted on the mitral valve orifice by the transvalvular pressure.  相似文献   

17.
The left atrium (LA) acts as a booster pump during late diastole, generating the Doppler transmitral A wave and contributing incrementally to left ventricular (LV) filling. However, after volume loading and in certain disease states, LA contraction fills the LV less effectively, and retrograde flow (i.e., the Doppler Ar wave) into the pulmonary veins increases. The purpose of this study was to provide an energetic analysis of LA contraction to clarify the mechanisms responsible for changes in forward and backward flow. Wave intensity analysis was performed at the mitral valve and a pulmonary vein orifice. As operative LV stiffness increased with progressive volume loading, the reflection coefficient (i.e., energy of reflected wave/energy of incident wave) also increased. This reflected wave decelerated the forward movement of blood through the mitral valve and was transmitted through the LA, accelerating retrograde blood flow in the pulmonary veins. Although total LA work increased with volume loading, the forward hydraulic work decreased and backward hydraulic work increased. Thus wave reflection due to increased LV stiffness accounts for the decrease in the A wave and the increase in the Ar wave measured by Doppler.  相似文献   

18.
In this work, a new mechanical prosthetic heart valve, the central axis valve, is presented. This new prosthesis has been tested in vitro, and compared with four other common prosthetic cardiac valves (Starr-Edwards 6120, Bjork-Shiley monostrut, Medtronic-Hall, and St Jude Medical valves). All valves studied have the same orifice diameter of 22 mm. The prostheses were installed inside a transparent mitral test chamber, which enables pressure drop measurement to be made under steady-state flow conditions using a blood analogue fluid. Pressure drop loss is one important factor affecting the overall performance of a prosthetic heart valve. Steady-state flow tests are essential to predict certain flow characteristics and pressure gradient loss before more complicated, expensive, and difficult-to-interpret pulsatile flow tests are conducted. All experiments were performed in vitro and at steady volumetric flow rates of 10 to 30 l/min. The Starr-Edwards SE 6120 showed the highest values for pressure drop. The St Jude Medical valve offers the minimum resistance to flow. The central axis valve comes second to the Starr-Edwards valve for this type of measurement. The new valve is promising. A complete valve evaluation programme, covering initial conceptional design through to clinical use, is in progress. Materials for the fabrication of the new valve are also under consideration.  相似文献   

19.
A murmur of mitral regurgitation developed in a 20-year-old woman with a 2-year history of systemic lupus erythematosus. Echocardiography revealed thickening of both valve leaflets and abnormal diastolic motion of the posterior one, confirming the diagnosis of mitral endocarditis. The mitral regurgitation progressed to cause congestive heart failure, which was refractory to drug therapy but was effectively treated with mitral valve replacement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号