首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ramirez ML  Chulze SN  Magan N 《Mycologia》2004,96(3):470-478
Studies were conducted to determine the effect of osmotic (NaCl, glycerol) and matric (PEG 8000) water stress on temporal germination and growth of two F. graminearum strains over the water potential range of -0.7 to -14.0 MPa at 15 and 25 C. The effect on endogenous water potentials and accumulation of sugars and sugar alcohols also were measured. For both strains, germination occurred rapidly over the same range of osmotic or matric potential of -0.7 to -5.6 MPa after 4-6 h incubation. At lower osmotic and matric potentials (-7.0 to -8.4 MPa), there was a lag of up to 24 h before germination. Optimum germ-tube extension occurred between -0.7 and -1.4 MPa for both strains but varied with the solute used. Growth was optimal at -1.4 MPa and 25 C in response to matric stress, with the minimum being about -8.0 and -11.2 MPa at 15 and 25 C, respectively. In contrast, F. graminearum grew fastest at -0.7 MPa and was more tolerant of solute stress modified with either glycerol or NaCl with a minimum of about -14.0 MPa at 15 and 25 C. A decrease in the osmotic/matric water potential of the media caused a large decrease in the mycelial water potential (Ψ(c)) as measured by thermocouple psychrometry. In general, the concentration of total sugar alcohols in mycelia increased as osmotic and matric potential were reduced to -1.2 MPa. However, this increase was more evident in mycelia from glycerol-amended media. The quality of the major sugar alcohol accumulated depended on the solute used to generate the water stress. The major compounds accumulated were glycerol and arabitol on osmotically modified media and arabitol on matrically modified media. In response to matric stress, the concentration of trehalose in colonies generally was higher in the case of osmotic stress. In each water-stress treatment there was a good correlation between Ψ(c) and total sugar alcohol content.  相似文献   

3.
Bacteria in terrestrial habitats frequently reside as biofilm communities on surfaces that are unsaturated, i.e. biofilms are covered in water films varying in thickness depending on the environmental conditions. Water availability in these habitats is influenced by the osmolarity of the water (solute stress) and by cellular dehydration imposed by matric stress, which increases as water content decreases. Unfortunately, we understand relatively little about the molecular mechanisms required for bacterial growth in low-water-content habitats. Here, we describe the use of mini-Tn5-'phoA to identify genes in Pseudomonas putida that are matric water stress controlled and to generate mutants defective in desiccation tolerance. We identified 20 genes that were induced by a matric stress but not by a thermodynamically equivalent solute stress, 11 genes were induced by both a matric and a solute stress, three genes were induced by a solute stress and three genes were repressed by a matric stress. Their patterns of expression were analysed in laboratory media, and their contribution to desiccation tolerance was evaluated. Twenty-six genes were homologous to sequences present in the completed P. putida KT2440 genome sequence or plasmid pWWO sequence that are involved in protein fate, nutrient or solute acquisition, energy generation, motility, alginate biosynthesis or cell envelope structure, and the function of five could not be predicted from the sequence. Together, these genes and their importance to desiccation tolerance provide a view of the environment perceived by bacteria in low-water-content habitats, and suggest that the mechanisms for adaptation for growth in low-water-content habitats are different from those for growth in high-osmolarity habitats.  相似文献   

4.
Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium. The utility of the PSM was demonstrated using Pseudomonas putida KT2440 tagged with gfp as a model bacterium. Single cells were inoculated at the surface of the PSM, and the rate at which colonies expanded laterally was measured for three matric potentials (−0.5, −1.2, and −3.6 kPa). The matric potential exerted significant influence on colony expansion rates, with a faster rate of spreading at −0.5 than at −1.2 or −3.6 kPa (diameter increase rate, ca. 1,000, 200, and 17 μm h−1, respectively). These differences can be attributed to cell motility, strongly limited under the most negative matric potential. The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.  相似文献   

5.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

6.
7.
In this work, we explore the potential use of the Pseudomonas putida KT2440 strain for bioremediation of naphthalene-polluted soils. Pseudomonas putida strain KT2440 thrives in naphthalene-saturated medium, establishing a complex response that activates genes coding for extrusion pumps and cellular damage repair enzymes, as well as genes involved in the oxidative stress response. The transfer of the NAH7 plasmid enables naphthalene degradation by P. putida KT2440 while alleviating the cellular stress brought about by this toxic compound, without affecting key functions necessary for survival and colonization of the rhizosphere. Pseudomonas putida KT2440(NAH7) efficiently expresses the Nah catabolic pathway in vitro and in situ, leading to the complete mineralization of [(14)C]naphthalene, measured as the evolution of (14)CO(2), while the rate of mineralization was at least 2-fold higher in the rhizosphere than in bulk soil.  相似文献   

8.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.  相似文献   

9.
10.
三唑磷水解酶基因为研究发现的一个新的广谱有机磷水解酶基因,通过PCR从有机磷降解菌株Ochrobactrumsp.mp-4总DNA扩增了tpd,将tpd定向克隆到pBBRMCS-5载体上,构建重组质粒pTPD,在辅助质粒pRK2013的帮助下,通过三亲接合将pTPD转移到模式菌株Pseudomonas putidaKT2440中,获得的工程菌PseudomonasputidaKT2440-DOP可以降解多种有机磷农药及芳香烃化合物;KT2440-DOP的有机磷水解酶活较出发菌株MP-4提高了一倍左右,且遗传性状稳定。  相似文献   

11.
《Biological Control》2013,64(3):310-319
The biocontrol potential of Pochonia chlamydosporia, a fungus with parasitic activity against economically important plant-parasitic nematodes, can be influenced by abiotic factors such as water availability. The objective of this study was to evaluate the effects of different water stress regimes on in vitro growth, sporulation, germination and parasitism of P. chlamydosporia isolates. The osmotic water potential of 1.7% corn meal agar (CMA) was modified by addition of potassium chloride (KCl) or glycerol, and the matric water potential was modified using polyethylene glycol (PEG 8000). The fungus was able to grow over a range of potentials but radial growth rates decreased with the increase of osmotic and matric stress. No growth was observed at −10 MPa on 1.7% CMA amended with glycerol and at −7.1 MPa on medium with PEG 8000 but all isolates were able to resume growth when transferred onto unmodified 1.7% CMA. The production of chlamydospores was repressed in both osmotic and matric modified media. Although the production of conidia increased in medium modified with KCl, the germination rate was lower. Spores/hyphal fragments remained viable in all isolates that were previously inoculated onto media with growth-limiting water potential (−10 MPa on 1.7% CMA amended with glycerol and −10 MPa on medium with PEG 8000). The percentage of viable conidia produced on 1.7% CMA, after inoculation under osmotic or matric stress conditions for 25 days, was over 74.5% in all isolates (osmotic stress) and ranged from 1% (Pc1) to 65.8% (Pc280) (matric stress). The in vitro infection of potato cyst nematodes, Globodera rostochiensis eggs by P. chlamydosporia isolates, grown under these limiting conditions, was studied using a standard bioassay. The percentage of parasitized eggs was significantly higher under osmotic stress except for isolates Pc2 and Pc3. P. chlamydosporia spores/hyphal fragments can remain viable at water potentials limiting for growth, for prolonged periods of time, suggesting that the osmoregulation mechanisms, used to compensate water stress, affect in vitro sporulation and increased pathogenicity. Knowledge on water requirements of P. chlamydosporia enables a better understanding of its survival and growth strategies in the soil environment and could aid the development of effective strategies to increase the production and quality of inoculum, thus contributing to the implementation of biosafe, sustainable management strategies against plant-parasitic nematodes.  相似文献   

12.
One rhamnolipid-producing bacterial strain named Pseudomonas aeruginosa BSFD5 was isolated and characterized. Its rhlABRI cassette including necessary genes for rhamnolipid synthesis was cloned and transformed into the chromosome of P. putida KT2440 by a new random transposon vector without introducing antibiotic-resistance marker, generating a genetically engineered microorganism named P. putida KT2440-rhlABRI, which could stably express the rhlABRI cassette and produce rhamnolipid at a yield of 1.68?g?l(-1). In experiments using natural soil, it was shown that P. putida KT2440-rhlABRI could increase the dissolution of pyrene and thus promote its degradation by indigenous microorganisms. P. putida KT2440-rhlABRI thus demonstrated potential for enhancing the remediation of soils contaminated with polycyclic aromatic hydrocarbons.  相似文献   

13.
Abstract Streptococcal promoters were shown to fulfil primary structure requirements for the expression of heterologous genes in Pseudomonas putida KT2440. The identity of the gene products, streptokinase and human interferon-α1, as synthesized by KT2440, was confirmed by their biological, antigenic and/or physical properties. Although designed as secretion vectors with streptococcal signal sequences, the recombinant plasmids failed to mediate the complete export of either protein into the periplasmic space of KT2440.  相似文献   

14.
Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to biocontrol activity of C. minitans in soil is discussed.  相似文献   

15.
To identify genes essential to biofilm formation in Pseudomonas putida KT2440, 12 mutants defective in oxidative stress-related or metabolic pathway-related genes were evaluated. Of them, only the dsbA mutant lacking the disulfide bond isomerase exhibited significantly increased attachment to the polystyrene surface. Visual evaluation by extracellular matrix staining and scanning electron microscopy indicated that the KT2440-Δ dsbA strain displays enhanced extracellular matrix production, rugose colony morphology on agar plates and floating pellicles in static culture. Accordingly, we propose that deletion of the dsbA gene may stimulate production of the extracellular matrix, resulting in those phenotypes. In addition, the lack of detectable fluorescence in the KT2440-Δ dsbA under UV light as well as in both the wild type and the KT2440-Δ dsbA when grown on Luria–Bertani plates containing ferrous iron suggests that the fluorescent molecule may be a fluorescent siderophore with its synthesis/secretion controlled by DsbA in KT2440. These phenotypic defects observed in the dsbA mutant were complemented by the full-length KT2440 and Escherichia coli dsbA genes. In contrast to the role of DsbA in other bacteria, our results provide the first evidence that disruption of P. putida KT2440 dsbA gene overproduces the extracellular matrix and thus promotes biofilm formation.  相似文献   

16.
17.
18.
19.
20.
We have characterized the expression pattern of a gene, ddcA, involved in initial colonization of corn seeds by Pseudomonas putida KT2440. The ddcA gene codes for a putative membrane polypeptide belonging to a family of conserved proteins of unknown function. Members of this family are widespread among prokaryotes and include the products of a Salmonella enterica serovar Typhimurium gene expressed during invasion of macrophages and psiE, an Escherichia coli phosphate starvation-inducible gene. Although its specific role is undetermined, the presence of ddcA in multicopy restored the seed adhesion capacity of a KT2440 ddcA mutant. Expression of ddcA is growth phase regulated, being maximal at the beginning of stationary phase. It is independent of RpoS, nutrient depletion, or phosphate starvation, and it is not the result of changes in the medium pH during growth. Expression of ddcA is directly dependent on cell density, being also stimulated by the addition of conditioned medium and of seed exudates. This is the first evidence suggesting the existence of a quorum-sensing system in P. putida KT2440. The potential implication of such a signaling process in seed adhesion and colonization by the bacterium is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号