首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral infections cause many different diseases stemming both from well-characterized viral pathogens but also from emerging viruses, and the search for novel viruses continues to be of great importance. High-throughput sequencing is an important technology for this purpose. However, viral nucleic acids often constitute a minute proportion of the total genetic material in a sample from infected tissue. Techniques to enrich viral targets in high-throughput sequencing have been reported, but the sensitivity of such methods is not well established. This study compares different library preparation techniques targeting both DNA and RNA with and without virion enrichment. By optimizing the selection of intact virus particles, both by physical and enzymatic approaches, we assessed the effectiveness of the specific enrichment of viral sequences as compared to non-enriched sample preparations by selectively looking for and counting read sequences obtained from shotgun sequencing. Using shotgun sequencing of total DNA or RNA, viral targets were detected at concentrations corresponding to the predicted level, providing a foundation for estimating the effectiveness of virion enrichment. Virion enrichment typically produced a 1000-fold increase in the proportion of DNA virus sequences. For RNA virions the gain was less pronounced with a maximum 13-fold increase. This enrichment varied between the different sample concentrations, with no clear trend. Despite that less sequencing was required to identify target sequences, it was not evident from our data that a lower detection level was achieved by virion enrichment compared to shotgun sequencing.  相似文献   

2.
We demonstrate detection of whole viruses and viral proteins with a new label-free platform based on spectral reflectance imaging. The Interferometric Reflectance Imaging Sensor (IRIS) has been shown to be capable of sensitive protein and DNA detection in a real time and high-throughput format. Vesicular stomatitis virus (VSV) was used as the target for detection as it is well-characterized for protein composition and can be modified to express viral coat proteins from other dangerous, highly pathogenic agents for surrogate detection while remaining a biosafety level 2 agent. We demonstrate specific detection of intact VSV virions achieved with surface-immobilized antibodies acting as capture probes which is confirmed using fluorescence imaging. The limit of detection is confirmed down to 3.5 × 10(5)plaque-forming units/mL (PFUs/mL). To increase specificity in a clinical scenario, both the external glycoprotein and internal viral proteins were simultaneously detected with the same antibody arrays with detergent-disrupted purified VSV and infected cell lysate solutions. Our results show sensitive and specific virus detection with a simple surface chemistry and minimal sample preparation on a quantitative label-free interferometric platform.  相似文献   

3.
Porous silicon biosensor for detection of viruses   总被引:4,自引:0,他引:4  
There is a growing need for virus sensors with improved sensitivity and dynamic range, for applications including disease diagnosis, pharmaceutical research, agriculture and homeland security. We report here a new method for improving the sensitivity for detection of the bacteriophage virus MS2 using thin films of nanoporous silicon. Porous silicon is an easily fabricated material that has extremely high surface area to volume ratio, making it an ideal platform for surface based sensors. We have developed and evaluated two different methods for covalent bioconjugation of antibodies inside of porous silicon films, and we show that the pore penetration and binding efficiency depend on the wettability of the porous surface. The resulting films were used to selectively capture dye-labeled MS2 viruses from solution, and a viral concentration as low as 2 x 10(7) plaque-forming units per mL (pfu/mL) was detectable by measuring the fluorescence from the exposed porous silicon film. The system exhibits sensitivity and dynamic range similar to the Luminex liquid array-based assay while outperforming protein micro-array methods.  相似文献   

4.
BACKGROUND: Although there is a growing need in the field of biotechnology to rapidly and accurately quantify viruses, time-consuming techniques such as the plaque titer method remain the "gold standard." Flow cytometric methods for virus quantification offer the advantages of rapid analysis and statistical treatment. The technique presented in this work represents the first demonstration of a flow cytometric determination of a viral count that is directly related to the count obtained by plaque titer. METHODS: A flow cytometric instrument for rapid quantification of virus particles was designed, constructed, and thoroughly characterized. A two-color method, which involved staining the viral genome and the protein coat for baculoviruses, was developed in addition to an algorithm to identify simultaneous events on the DNA and protein channels. RESULTS: The instrument was fully characterized, which included analysis of the data acquisition rate, sampling time, flow rate, detection efficiency, linear dynamic range, channel cross-talk, and the limit of detection. Baculovirus samples were analyzed and the results were compared with concentrations obtained by a one-channel flow cytometer and plaque assay. CONCLUSIONS: The dual channel virus counter yields a representative value for the concentration of active viruses in an unpurified sample when compared with plaque assay and a one-channel flow cytometer. The technique is rapid (within minutes), requires only minimal sample preparation and minimum sample size (approximately 100 microl).  相似文献   

5.
6.

Background  

Most virus detection methods are geared towards the detection of specific single viruses or just a few known targets, and lack the capability to uncover the novel viruses that cause emerging viral infections. To address this issue, we developed a computational method that identifies the conserved viral sequences at the genus level for all viral genomes available in GenBank, and established a virus probe library. The virus probes are used not only to identify known viruses but also for discerning the genera of emerging or uncharacterized ones.  相似文献   

7.
The possibility of the application of electro-acoustic analysis for the detection of bacteriophages was demonstrated for the first time based on the example of the interaction of the FA1-Sp59b bacteriophage with bacterial cells of the strain Azospirillum lipoferum Sp59b. Piezoelectric cross-field resonators with a 1-mL chamber for analyzed liquid were used as the biological sensor. It was revealed that the dependences of the real and imaginary parts of the electrical impedance of the resonator loaded with a suspension of viruses and microbial cells on the frequency was significantly different from those dependences of the resonator that contained a control cell suspension without the virus. It was shown that detection of the FA1-Sp59b bacteriophage using microbial cells was possible with both extraneous viral particles and extraneous microbial cells. The proposed method allows one to accurately determine the type of identified virus after a 5-minute interaction with indicating bacterial culture. As well, the minimum concentration of viruses is five virus particles per cell. These results as a whole demonstrate the possibility of detecting specific interactions of bacteriophages with microbial cells and provide a basis for the development of a biological sensor for the quantitative detection of viruses directly in the liquid phase.  相似文献   

8.

Background

Rift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses.

Results

Screening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics.

Conclusion

This study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV.  相似文献   

9.
Various enteric viruses including norovirus, rotavirus, adenovirus, and astrovirus are the major etiological agents of food-borne and water-borne disease outbreaks and frequently cause non-bacterial gastroenteritis worldwide. Sensitive and high-throughput detection methods for these viral pathogens are compulsory for diagnosing viral pathogens and subsequently improving public health. Hence, we developed a sensitive, specific, and high-throughput analytical assay to detect most major enteric viral pathogens using “Combimatrix” platform oligonucleotide probes. In order to detect four different enteric viral pathogens in a sensitive and simultaneous manner, we first developed a multiplex RT-PCR assay targeting partial gene sequences of these viruses with fluorescent labeling for the subsequent microarray. Then, five olignonucleotides specific to each of the four major enteric viruses were selected for the microarray from the oligonulceotide pools targeting the specific genes obtained by multiplex PCR of these viruses. The oligonucleotide microarray was evaluated against stool specimens containing single or mixed viral species. As a result, we demonstrated that the multiplex RT-PCR assay specifically amplified partial sequences of four enteric viruses and the subsequent microarray assay was capable of sensitive and simultaneous detection of those viruses. The developed method could be useful for diagnosing enteric viruses in both clinical and environmental specimens.  相似文献   

10.
Viral pollution in shellfish has been analyzed simultaneously across a wide range of geographical regions, with emphasis on the concomitant variations in physicochemical characteristics and social features. The methods for sample treatment and for the detection of human enteric viruses were optimized by the participating laboratories. The second part of this study involves the selection of a protocol for virus detection, which was validated by analyzing the distribution and concentration of human viral pathogens under diverse conditions during an 18-month period in four European countries. Shellfish-growing areas from diverse countries in the north and south of Europe were defined and studied, and the microbiological quality of the shellfish was analyzed. Human adenovirus, Norwalk-like virus, and enterovirus were identified as contaminants of shellfish in all the participating countries. Hepatitis A virus was also isolated in all areas except Sweden. The seasonal distribution of viral contamination was also described. Norwalk-like virus appeared to be the only group of viruses that demonstrated seasonal variation, with lower concentrations occurring during warm months. The depuration treatments currently applied were shown to be adequate for reducing Escherichia coli levels but ineffective for the elimination of viral particles. The human adenoviruses detected by PCR correlate with the presence of other human viruses and could be useful as a molecular index of viral contamination in shellfish.  相似文献   

11.
12.
13.
Viruses are of high medical and biodefense concern and their detection at concentrations well below the threshold necessary to cause health hazards continues to be a challenge with respect to sensitivity, specificity, and selectivity. Ideally, assays for accurate and real time detection of viral agents would not necessitate any pre-processing of the analyte, which would make them applicable for example to bodily fluids (blood, sputum) and man-made as well as naturally occurring bodies of water (pools, rivers). We describe herein a robust biosensor that combines the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325MHz with the specificity provided by antibodies for the detection of viral agents. A lithium tantalate-based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against either Coxsackie virus B4 or the category A bioagent Sin Nombre virus (SNV), a member of the genus Hantavirus, family Bunyaviridae, negative-stranded RNA viruses. Rapid detection (within seconds) of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, although the sensor was approximately 5 x 10(5)-fold more sensitive for the detection of SNV. For both pathogens, the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1. The biosensor was able to detect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS). Further, in a proof-of-principle real world application, the SAW biosensor was capable to selectively detect SNV agents in complex solutions, such as naturally occurring bodies of water (river, sewage effluent) without analyte pre-processing. This is the first study that reports on the detection of viral agents using an antibody-based SAW biosensor that has the potential to be used as a hand-held and self-contained device for rapid viral detection in the field.  相似文献   

14.
The development of portable systems for analysis of nucleic acids (NAs) is crucial for the evolution of biosensing in the context of future healthcare technologies. The integration of NA extraction, purification, and detection modules, properly actuated by microfluidics technologies, is a key point for the development of portable diagnostic systems. In this paper, we describe an integrated biosensor platform based on a silicon–plastic hybrid lab-on-disk technology capable of managing NA extraction, purification, and detection processes in an integrated format. The sample preparation process is performed by solid-phase extraction technology using magnetic beads on a plastic disk, while detection is done through quantitative real-time polymerase chain reaction (qRT-PCR) on a miniaturized silicon device. The movement of sample and reagents is actuated by a centrifugal force induced by a disk actuator instrument. The assessment of the NA extraction and detection performance has been carried out by using hepatitis B virus (HBV) DNA genome as a biological target. The quantification of the qRT-PCR chip in the hybrid disk showed an improvement in sensitivity with respect to the qRT-PCR commercial platforms, which means an optimization of time and cost. Limit of detection and limit of quantification values of about 8 cps/reaction and 26 cps/reaction, respectively, were found by using analytical samples (synthetic clone), while the results with real samples (serum with spiked HBV genome) indicate that the system performs as well as the standard methods.  相似文献   

15.
A common technique used for sensitive and specific diagnostic virus detection in clinical samples is PCR that can identify one or several viruses in one assay. However, a diagnostic microarray containing probes for all human pathogens could replace hundreds of individual PCR-reactions and remove the need for a clear clinical hypothesis regarding a suspected pathogen. We have established such a diagnostic platform for random amplification and subsequent microarray identification of viral pathogens in clinical samples. We show that Phi29 polymerase-amplification of a diverse set of clinical samples generates enough viral material for successful identification by the Microbial Detection Array, demonstrating the potential of the microarray technique for broad-spectrum pathogen detection. We conclude that this method detects both DNA and RNA virus, present in the same sample, as well as differentiates between different virus subtypes. We propose this assay for diagnostic analysis of viruses in clinical samples.  相似文献   

16.
New DNA viruses identified in patients with acute viral infection syndrome   总被引:11,自引:0,他引:11  
A sequence-independent PCR amplification method was used to identify viral nucleic acids in the plasma samples of 25 individuals presenting with symptoms of acute viral infection following high-risk behavior for human immunodeficiency virus type 1 transmission. GB virus C/hepatitis G virus was identified in three individuals and hepatitis B virus in one individual. Three previously undescribed DNA viruses were also detected, a parvovirus and two viruses related to TT virus (TTV). Nucleic acids in human plasma that were distantly related to bacterial sequences or with no detectable similarities to known sequences were also found. Nearly complete viral genome sequencing and phylogenetic analysis confirmed the presence of a new parvovirus distinct from known human and animal parvoviruses and of two related TTV-like viruses highly divergent from both the TTV and TTV-like minivirus groups. The detection of two previously undescribed viral species in a small group of individuals presenting acute viral syndrome with unknown etiology indicates that a rich yield of new human viruses may be readily identifiable using simple methods of sequence-independent nucleic acid amplification and limited sequencing.  相似文献   

17.
The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release.  相似文献   

18.

Background

Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure.

Results

The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pig virus.

Conclusion

The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures comparability of the method and may be used for further method optimization.  相似文献   

19.
Mosquito-borne viruses encompass a range of virus families, comprising a number of significant human pathogens (e.g., dengue viruses, West Nile virus, Chikungunya virus). Virulent strains of these viruses are continually evolving and expanding their geographic range, thus rapid and sensitive screening assays are required to detect emerging viruses and monitor their prevalence and spread in mosquito populations. Double-stranded RNA (dsRNA) is produced during the replication of many of these viruses as either an intermediate in RNA replication (e.g., flaviviruses, togaviruses) or the double-stranded RNA genome (e.g., reoviruses). Detection and discovery of novel viruses from field and clinical samples usually relies on recognition of antigens or nucleotide sequences conserved within a virus genus or family. However, due to the wide antigenic and genetic variation within and between viral families, many novel or divergent species can be overlooked by these approaches. We have developed two monoclonal antibodies (mAbs) which show co-localised staining with proteins involved in viral RNA replication in immunofluorescence assay (IFA), suggesting specific reactivity to viral dsRNA. By assessing binding against a panel of synthetic dsRNA molecules, we have shown that these mAbs recognise dsRNA greater than 30 base pairs in length in a sequence-independent manner. IFA and enzyme-linked immunosorbent assay (ELISA) were employed to demonstrate detection of a panel of RNA viruses from several families, in a range of cell types. These mAbs, termed monoclonal antibodies to viral RNA intermediates in cells (MAVRIC), have now been incorporated into a high-throughput, economical ELISA-based screening system for the detection and discovery of viruses from mosquito populations. Our results have demonstrated that this simple system enables the efficient detection and isolation of a range of known and novel viruses in cells inoculated with field-caught mosquito samples, and represents a rapid, sequence-independent, and cost-effective approach to virus discovery.  相似文献   

20.
建立一种高通量的基因微阵列检测技术,对常见呼吸道病毒感染进行监控.根据公开发表的8个病毒科38种常见呼吸道病毒的序列,计算其保守区域,设计病毒的特异性检测探针,制备呼吸道病毒检测基因微阵列.利用随机引物PCR方法标记样品中的病毒靶序列,标记产物与基因微阵列上的探针杂交,清洗、扫描后进行结果分析.采用流感病毒、麻疹病毒、腮腺炎病毒和风疹病毒作为报告病毒,并对80例上呼吸道感染患者的咽拭子标本进行验证测试.初步结果表明,该呼吸道病毒微阵列基因芯片检测是可行的,在利用基因微阵列技术对病毒监控方面进行了有益的尝试,得到了有经验的信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号