首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress-induced release or central administration of corticotropin-releasing factor (CRF) enhances locomotion in a wide range of vertebrates, including the roughskin newt, Taricha granulosa. Although CRF's stimulatory actions on locomotor behavior are well established, the target neurons through which CRF exerts this effect remain unknown. To identify these target neurons, we utilized a fluorescent conjugate of CRF (CRF-TAMRA 1) to track this peptide's internalization into reticulospinal and other neurons in the medullary reticular formation (MRF), a region critically involved in regulating locomotion. Epifluorescent and confocal microscopy revealed that CRF-TAMRA 1 was internalized by diverse MRF neurons, including reticulospinal neurons retrogradely labeled with Cascade Blue dextran. In addition, we immunohistochemically identified a distinct subset of serotonin-containing neurons, located throughout the medullary raphé, that also internalized the fluorescent CRF-TAMRA 1 conjugate. Chronic single-unit recordings obtained from microwire electrodes in behaving newts revealed that intracerebroventricular (icv) administration of CRF-TAMRA 1 increased medullary neuronal firing and that appearance of this firing was associated with, and strongly predictive of, episodes of CRF-induced locomotion. Furthermore, icv administered CRF-TAMRA 1 produced behavioral and neurophysiological effects identical to equimolar doses of unlabeled CRF. Collectively, these findings provide the first evidence that CRF directly targets reticulospinal and serotonergic neurons in the MRF and indicate that CRF may enhance locomotion via direct effects on the hindbrain, including the reticulospinal system.  相似文献   

2.
Endogenously secreted or injected corticosterone (CORT) rapidly suppresses courtship clasping in male roughskin newts (Taricha granulosa) by an action on a specific neuronal membrane receptor. Previous studies, using immobilized newts, showed that CORT administration rapidly depresses excitability of reticulospinal neurons and attenuates medullary neuronal responsiveness to clasp-triggering sensory stimuli. The present study used freely moving newts to examine clasping responses and concurrently record sensorimotor properties of 67 antidromically identified reticulospinal and other medullary reticular neurons before and after CORT injection. Before CORT, reticulospinal neurons fired in close association with onset and offset of clasps elicited by cloacal pressure. Reticulospinal neurons also showed firing correlates of nonclasping motor events, especially locomotion. Neuronal activity was typically reduced during clasping and elevated during locomotion. Medullary neurons that were not antidromically invaded (unidentified neurons) usually showed sensorimotor properties that resembled those of reticulospinal neurons. Intraperitoneal CORT (but not vehicle) reduced the probability and quality of hindlimb clasping in response to cloacal pressure, especially within 5–25 min of injection. Simultaneously, responses of reticulospinal and unidentified neurons to cloacal pressure and occurrence of clasping-related activity were attenuated or eliminated. CORT effects were relatively selective, altering clasping-related neuronal activity more strongly than activity associated with nonclasping motor events. The properties of CORT effects indicate that the hormone impairs clasping by depressing processing of clasp-triggering afferent activity and by disrupting the medullary control of clasping normally mediated by reticulospinal neurons. The rapid onset of these CORT effects implicates a neuronal membrane receptor rather than genomic action of the steroid.  相似文献   

3.
Investigation of the rapid suppression of male courtship clasping behavior by corticosterone in roughskin newts (Taricha granulosa) has led to the identification of a specific neuronal membrane receptor for this stress steroid. This paper describes studies of the neurophysiological effects of the rapid, membrane receptor mediated action of corticosterone on neurons that are involved in the control of clasping. In freely behaving newts, medullary neurons, including reticulospinal neurons, process clasp-triggering sensory signals and participate in control of clasping movements. Corticosterone injection causes these brainstem neurons to show selective depression of clasping-related sensorimotor function. These corticosterone effects appear in 3-10 min and are closely associated with the simultaneous depression of clasping. In addition to these functionally specific effects, corticosterone simultaneously causes widespread, primarily depressive effects on neuronal activity and excitability in the medulla and elsewhere in the brain. Thus, the membrane actions of corticosterone lead to diverse neural effects, including changes in membrane excitability as well as specific, network-level actions that are apparent only during behavior. These rapid corticosterone effects strongly interact with actions of the neuropeptides vasotocin and corticotropin-releasing factor, such that the form and magnitude of the steroid's effects depend on the prevailing neuroendocrine state of the brain.  相似文献   

4.
J D Rose  F L Moore 《Steroids》1999,64(1-2):92-99
Stress-induced corticosterone (CORT) secretion that causes a rapid blockade of courtship clasping by male roughskin newts (Taricha granulosa) is mediated by a specific neuronal membrane receptor for CORT. Amplectic clasping, which can be triggered by pressure on the ventral body surface and cloaca, is controlled by the influence of medullary neurons on the spinal cord. Using clasping as a simple neurobehavioral model, we have focused our analysis of CORT effects on clasping by examining the steroid's effects on neurophysiological properties of medullary neurons, especially medullary reticulospinal neurons, the principal output cells from the brain to the spinal cord. Systemic CORT caused, within 3 min of injection, diverse reductions in reticulospinal neuron excitability. Another rapid CORT effect on medullary neurons was to depress responsiveness to pressure on the cloaca. Experiments with chronically implanted, freely moving newts revealed that the rapid CORT effects are quite specific to neural processes related to clasping. CORT injections rapidly blocked clasping in response to cloacal stimuli and concurrently depressed neuronal responses to cloacal pressure and firing associated with clasping. Activity of reticulospinal neurons was often associated with nonclasping movements and this activity was rarely altered by CORT. Thus, CORT mainly affected aspects of neuronal function related to clasping. In other neurophysiological experiments, we found that the neuropeptides vasotocin and corticotropin-releasing hormone modified the neural effects of CORT. Prior exposure of medullary neurons to either of these neuropeptides caused systemic CORT administration to rapidly potentiate neuronal responses to cloacal stimuli, indicating that the direction and potency of CORT effects depend critically on the prevailing neuroendocrine state of the brain.  相似文献   

5.
Courtship clasping, a reproductive behavior in male roughskin newts (Taricha granulosa), is rapidly blocked by an action of corticosterone (CORT) at a specific neuronal membrane receptor. The CORT-induced impairment of clasping in behaving newts appears to be mediated partly by an elimination of clasping-related activity in medullary reticulospinal neurons. Previous studies of rapid CORT actions in Taricha have focused on the brain, so existence of CORT action in the spinal cord or peripheral nervous system has not been assessed. The present study used newts with a high cervical spinal transection to examine potential spinal or peripheral CORT effects on clasping by the hindlimbs in response to pressure on the cloaca. Spinal transection causes clasps elicited by cloacal stimulation to be very sustained beyond the termination of the eliciting stimulus. In spinally transected newts, CORT caused a dose-dependent depression in the duration as well as quality of the clasp that appeared within 10 min of injection. CORT selectively impaired the usual sustained maintenance of a clasp after termination of cloacal stimulation, but not clasp elicitation during stimulation. These effects were not produced by dexamethasone, a synthetic glucocorticoid that binds poorly to the CORT membrane receptor. The CORT effect on clasp maintenance but not clasp elicitation implies selective action on an intraspinal generator for clasping but not on sensory or efferent neuromuscular aspects of the response. These results indicate the presence in the newt spinal cord of the CORT membrane receptor that exerts functional effects distinctly different from those on the brainstem.  相似文献   

6.
The pedunculopontine tegmental nucleus (PPTN) has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson''s disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey''s attentional and vigilance state to perform the task.  相似文献   

7.
The activity of single dopamine (DA)-containing cells in the medial substantia nigra and ventral tegmental area was recorded in awake behaving rats. These rats were trained, using either instrumental or classical conditioning techniques, to respond for chocolate milk reinforcement. More than 50% of the cells tested showed changes in firing pattern associated with some aspect of the conditioned response. Furthermore, the incidence of active DA cells and their firing rates were increased in animals given the DA receptor blocker, haloperidol. Our results indicate that some DA cells change their firing pattern following behaviorally relevant stimuli, and that the incidence of spontaneously active DA neurons is low in the awake rat.  相似文献   

8.
Previous work of others and ours has shown that corticotropin-releasing hormone (CRH) is a positive stimulus for thyroid and interrenal hormone secretion in amphibian larvae and that activation of CRH neurons may mediate environmental effects on the timing of metamorphosis. These studies have investigated CRH actions in anurans (frogs and toads), whereas there is currently no information regarding the actions of CRH on metamorphosis of urodeles (salamanders and newts). We tested the hypothesis that CRH can accelerate metamorphosis of tiger salamander (Ambystoma tigrinum) larvae. We injected tiger salamander larvae with ovine CRH (oCRH; 1 microg/day; i.p.) and monitored effects on metamorphosis by measuring the rate of gill resorption. oCRH-injected larvae completed metamorphosis earlier than saline-injected larvae. There was no significant difference between uninjected and saline-injected larvae. Mean time to reach 50% reduction in initial gill length was 6.9 days for oCRH-injected animals, 11.9 days for saline-injected animals, and 14.1 days for uninjected controls. At the conclusion of the experiment (day 15), all oCRH-injected animals had completed metamorphosis, whereas by day 15, only 50% of saline-injected animals and 33% of uninjected animals had metamorphosed. Our results show that exogenous oCRH can accelerate metamorphosis in urodele larvae as it does in anurans. These findings suggest that the neuroendocrine mechanisms controlling metamorphosis are evolutionarily conserved across amphibian taxa.  相似文献   

9.
Summary. Inhibitors of kynurenine 3-hydroxylase have previously been used to increase endogenous levels of kynurenic acid, an excitatory amino acid receptor antagonist. In the present electrophysiological study PNU 156561A was utilized to elevate endogenous concentrations of kynurenic acid and subsequent effects on the firing pattern of dopamine (DA) neurons of rat substantia nigra (SN) were analyzed. Pretreatment with PNU 156561A (40 mg/kg, i.v., 5–7 h) caused a five-fold increase in endogenous kynurenic acid levels in whole brain five to seven hours after administration and also evoked a significant increase in firing rate and bursting activity of nigral DA neurons. The results of the present study show that a moderate increase in endogenous kynurenic acid levels produces significant actions on the tonic glutamatergic control of the firing pattern of nigral DA neurons, and implicate kynurenine 3-hydroxylase inhibitors as novel antiparkinsonian agents. Received April 3, 2000 Accepted July 2, 2000  相似文献   

10.
AimsThe hypothalamic arcuate nucleus (ARH) is one of the brain regions with the highest levels of catalase expression. Acetaldehyde, metabolized from ethanol in the CNS through the actions of catalase, has a role in the behavioral effects observed after ethanol administration. In previous studies acetaldehyde injected in the lateral ventricles or in the substantia nigra reticulata (SNR) mimicked the behavioral stimulant effects of centrally administered ethanol.Main methodsIn the present study we assessed the effects of acetaldehyde administered either into the ARH into a dorsal control or into the third ventricle on locomotion and rearing observed in 30 min sessions in an open field.Key findingsAcetaldehyde injected into the ARH induced horizontal locomotion and rearing for 20 min. In contrast, administration of acetaldehyde into a control site dorsal to the ARH did not have any effect on locomotion. Although acetaldehyde administration into the third ventricle also induced locomotion, the time course for the effect in this area was different from the time course following ARH injections. Acetaldehyde in the ARH produced a long lasting induction of locomotion, while with intraventricular injections the effects disappeared after 5 min.SignificanceThe present results are consistent with previous studies demonstrating that acetaldehyde is an active metabolite of ethanol, which can have locomotor stimulant properties when administered in the ventricular system of the brain or into specific brain nuclei. Some brain nuclei rich in catalase (i.e.; SNR and ARH) could be mediating some of the locomotor stimulant effects of ethanol through its conversion to acetaldehyde.  相似文献   

11.
The concept of coded 'command releasing systems' proposes that visually specialized descending tectal (and pretectal) neurons converge on motor pattern generating medullary circuits and release--in goal-specific combination--specific action patterns. Extracellular recordings from medullary neurons of the medial reticular formation of the awake immobilized toad in response to moving visual stimuli revealed the following main results. (i) Properties of medullary neurons were distinguished by location, shape, and size of visual receptive fields (ranging from relatively small to wide), by trigger features of various moving configural stimulus objects (including prey- and predator-selective properties), by tactile sensitivity, and by firing pattern characteristics (sluggish, tonic, warming-up, and cyclic). (ii) Visual receptive fields of medullary neurons and their responses to moving configural objects suggest converging inputs of tectal (and pretectal) descending neurons. (iii) In contrast to tectal monocular 'small-field' neurons, the excitatory visual receptive fields of comparable medullary neurons were larger, ellipsoidally shaped, mostly oriented horizontally, and not topographically mapped in an obvious fashion. Furthermore, configural feature discrimination was sharper. (iv) The observation of multiple properties in most medullary neurons (partly showing combined visual and cutaneous sensitivities) suggests integration of various inputs by these cells, and this is in principle consistent with the concept of command releasing systems. (v) There is evidence for reciprocal tectal/medullary excitatory pathways suitable for premotor warming-up. (vi) Cyclic bursting of many neurons, spontaneously or as a post-stimulus sustaining event, points to a medullary premotor/motor property.  相似文献   

12.
赵涤尘  徐屯  孙明智 《生理学报》1988,40(4):326-334
在54只大鼠上,用两支微电极同时记录神经元放电的方法,研究了脑室注射乙酰胆碱(ACh)对丘脑束旁核(Pf)和中脑网状结构(RF)痛反应神经元电活动的影响。结果表明,当脑内ACh含量增加时,Pf和RF中两个痛兴奋神经元(PEN)的电活动同时减弱,两个痛抑制神经元(PIN)的电活动同时加强,Pf中一个PEN电活动减弱的同时RF中一个PIN电活动加强,或者相反。阿托品可以阻断ACh的上述作用。这提示,ACh对不同中枢痛反应神经元的电活动的影响是通过M胆碱能受体而实现的。  相似文献   

13.
The putative autoreceptor-selective dopamine (DA) agonist B-HT 920 was tested using electrophysiological and behavioral models thought to reflect actions at postsynaptic D2 DA receptors. Direct iontophoretic application of B-HT 920 onto nucleus accumbens neurons caused a current-dependent inhibition of firing which could be attenuated by pretreatment with alpha-methyl-p-tyrosine (to deplete DA) and reinstated (enabled) by concurrent administration of the selective D1 DA receptor agonist SKF 38393. These findings suggest that, like other selective D2 DA receptor agonists, the postsynaptic effects of B-HT 920 require concurrent stimulation of D1 DA receptors. Behavioral indices of postsynaptic D2 DA receptor stimulation (stereotyped sniffing and rearing) were also evident following combined treatment with B-HT 920 and SKF 38393. Moreover, similar "low-level" stereotyped behaviors were also observed when B-HT 920 was administered alone following pretreatment with the alpha-2 adrenoceptor antagonists idazoxane and piperoxane, suggesting that alpha-2 agonist actions of B-HT 920, in some way, mask the expression of D2 receptor-mediated stereotyped responses. When B-HT 920 was combined with SKF 38393 following pretreatment with idazoxane, both the intensity and form (continual licking and gnawing) of stereotyped behavior was enhanced. Taken together, these electrophysiological and behavioral findings indicate that B-HT 920 possesses the properties of a selective D2 DA receptor agonist and cannot be considered as a DA autoreceptor-selective compound.  相似文献   

14.
The nucleus of the solitary tract (NTS), a termination site for primary afferent fibers from baroreceptors and other peripheral cardiovascular receptors, contains blood pressure-sensitive neurons, some of which have rhythmic activity locked to the cardiac cycle, making them key components of the central pathway for cardiovascular regulation. The paratrigeminal nucleus (Pa5), a small collection of medullary neurons in the dorsal lateral spinal trigeminal tract, like the NTS, receives primary somatosensory inputs of glossopharyngeal, vagal, and other nerves. Recent studies show that the Pa5 has efferent connections to the rostroventrolateral reticular nucleus (RVL), NTS, and ambiguous nucleus, suggesting that its structure may play a role in the baroreceptor reflex modulation. In the present study, simultaneous recording from multiple single neurons in freely behaving rats challenged with i.v. phenylephrine administration, showed that 83% of NTS units and 72% of Pa5 units were baroreceptor sensitive. Whereas most of the baroreceptor-sensitive NTS and Pa5 neurons (86 and 61%, respectively) increased firing rate during the ascending phase of the pressor response, about 16% of Pa5 and NTS baroreceptor-sensitive neurons had a decreased firing rate. On one hand, the decrease in firing rate occurred during the ascending phase of the pressor response, indicating sensitivity to rapid changes in arterial pressure. On the other hand, the increases in neuron activity in the Pa5 or NTS occurred during the entire pressor response to phenylephrine. Cross-correlational analysis showed that 71% of Pa5 and 93% of NTS baroreceptor-activated neurons possessed phasic discharge patterns locked to the cardiac cycle. These findings suggest that the Pa5, like the NTS, acts as a terminal for primary afferents in the medullary-baroreflex or cardiorespiratory-reflex pathways.  相似文献   

15.
The effects of acute and subchronic Rimcazole administration on A9 and A10 dopamine (DA) neurons were examined using extracellular single cell recording techniques. Intravenous injections of Rimcazole did not prevent or reverse the inhibition of firing rates of DA cells produced by DA agonist apomorphine (APO). Single intraperitoneal injection of Rimcazole decreased the number of spontaneously active DA cells in A10, but not in A9; it had no effect on the firing rate of DA neurons in either A9 or A10. Following prolonged administration of Rimcazole, 25 mg/kg/day for 28 days, there was a significant increase in the number of spontaneously active A10 DA neurons, but not A9 DA cells. The firing rate of both A9 and A10 DA cells decreased significantly following prolonged Rimcazole administration; however, the firing pattern of these cells did not change. In addition, chronic Rimcazole did not affect the ID50 of APO for DA neurons. These results suggest that Rimcazole has an indirect effect on DA neurons with a relative selectivity for A10 DA cells; it does not exhibit pharmacological profiles of previously reported antipsychotic drugs.  相似文献   

16.
The actions of neuropeptide AF (NPAF), on the hypothalamic-pituitary-adrenal (HPA) axis, behavior and autonomic functions were investigated. NPAF (0.25, 0.5, 1, 2 nmol) was administered intracerebroventricularly to rats, the behavior of which was monitored by means of telemetry, open-field (OF) observations and elevated plus-maze (EPM) tests. The temperature and heart rate were recorded by telemetry, and the plasma ACTH and corticosterone levels were used as indices of the HPA activation. The dopamine release from striatal and amygdala slices after peptide treatment (100 nM and 1 μM) was measured with a superfusion apparatus. To establish the transmission of the HPA response, animals were pretreated with the corticotrophin-releasing hormone (CRH) receptor antagonist antalarmin or astressin 2B (0.5 nmol). In the OF test, the animals were pretreated with antalarmin or haloperidol (10 μg/kg), while in the EPM test they were pretreated with antalarmin or diazepam (1 mg/kg). NPAF stimulated ACTH and corticosterone release, which was inhibited by antalarmin. It activated exploratory locomotion (square crossings and rearings) and grooming in OF observations, and decreased the entries to and the time spent in the open arms during the EPM tests. The antagonists inhibited the locomotor responses, and also attenuated grooming and the EPM responses. NPAF also increased spontaneous locomotion, and tended to decrease the core temperature and the heart rate in telemetry, while it augmented the dopamine release from striatal and amygdala slices. These results demonstrate, that acute administration of exogenous NPAF stimulates the HPA axis and behavioral paradigms through CRH and dopamine release.  相似文献   

17.
Antidepressants exert mixed actions on serotonergic and catecholaminergic systems. However, it is unknown whether a catecholaminergic blockade impinge on the actions of a tricyclic with serotonergic agonist properties (clomipramine) in limbic structures. The aim of the present study is to explore the effects of a catecholaminergic lesion in the basolateral amygdala on the firing rate of lateral septal, and hippocampal neurons in rats treated with clomipramine. An amygdaline lesion with 6-OHDA resembled the actions of clomipramine on the firing rate in lateral septal neurons, i.e. an increased rate of firing. However, the lesion blocked further effects of clomipramine on septal firing. Clomipramine decreased the firing rate in hippocampal neurons; however, neither the 6-OHDA lesion nor the added treatment with clomipramine modified the firing rate. It is concluded that an intact catecholaminergic amygdaloid input to lateral septal nuclei is necessary for clomipramine actions; however, the initial action of the tricyclic may involve a catecholaminergic blockade.  相似文献   

18.
1. 5,6-dihydroxytryptamine (5,6-DHT) or a lesion of the raphe centralis superior (RCS) cause significant decreases in the serotonin (5-HT) content and significant increases in the tyrosine hydroxylase activity in the locus coeruleus (LC) of the rat. This suggests that noradrenaline (NA) synthesis is controlled by serotonin-containing neurons in the raphe system via their terminals in the LC. 2. Radioautography after intraventricular infusion of tritiated serotonin (3H-5-HT) and biochemical determinations of endogenous 5-HT content showed an almost complete disappearance of serotoninergic axonal varicosities and content in the LC region 10-15 days after intraventricular administration of 75 micrograms of 5,6-DHT. Two to 4 months after neurotoxin administration, 5-HT fibers had regrown in the LC but, contrary to the normal innervation pattern, the majority of them invaded the medial most portion of the nucleus and the adjacent subependymal region. The LC region regained almost all of its endogenous 5-HT content in the same time period. 3. Functional recuperation of these 5-HT fibers was demonstrated by the fact that the RCS had, after regeneration, the same functional control on NA synthesis as in the normal animal.  相似文献   

19.
Intraventricular corticotropin releasing hormone (CRH) suppresses food intake and body weight as a stress response. Insulin, acting within the brain, also suppresses food intake and body weight, and this suppression is related to caloric homeostasis. We determined if increased insulin within the brain potentiates the anorexic effects of intraventricular CRH. Rats were food deprived for 17 h each day and then given 30-min access to Ensure. One-half received continuous third ventricular infusion of synthetic cerebrospinal fluid via osmotic minipumps, and one-half received insulin (0.6 mU/day). During the infusion, rats also received 0, 0.1, 1.0, or 5.0 microg of CRH into the lateral ventricle just before access to Ensure. Insulin alone had no effect on Ensure intake or body weight. CRH dose dependently reduced Ensure intake in both groups, and the reduction was greater in the insulin group. Hence, central insulin potentiated the ability of centrally administered CRH to suppress food intake. These findings suggest that stress-related influences over food intake, particularly those mediated via CRH, interact with relative adiposity as signaled to the brain by central insulin.  相似文献   

20.
Simultaneous single-unit and intracortical activity were recorded from neocortical neurons in urethane-anaesthetized rats to investigate the role of serotonin (5-HT) in modifying cortical excitability. Units, at a depth of 775-1100 microns from the pial surface, discharged in a burst-pause pattern that was correlated with slow wave activity. Application of noxious somatic stimulation resulted in cortical desynchronization and altered the pattern of unit activity such that firing was continuous, i.e., the pauses were eliminated. Intravenous administration of the mixed 5-HT1C/5-HT2 antagonists (cinanserin, cyproheptadine, ketanserin, and ritanserin) prevented both desynchronization and the change in unit activity induced by noxious stimulation within 2.5-15 min of the injection. The basic pattern of burst-pause activity remained intact, but the number of spikes per burst was typically reduced, whereas interburst intervals were increased. Iontophoretic application of these antagonists onto cortical neurons resulted in actions similar to those observed following systemic administration. Intravenous and iontophoretic application of m-trifluomethylphenylpiperazine (5-HT1C agonist, 5-HT2 antagonist) resulted in actions indistinguishable from those observed with the above antagonists, from which we conclude 5-HT2 and not 5-HT1C receptors mediate the alteration in unit activity observed with noxious stimulation. The results are discussed with respect to an interaction between N-methyl-D-aspartate and 5-HT2 receptors leading to the enhanced unit activity observed with noxious stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号