首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lack of Delta like 1 and 4 expressions in nude thymus anlages   总被引:3,自引:0,他引:3  
  相似文献   

2.
Notch signalling is critical to help direct T-cell lineage commitment in early T-cell progenitors and in the development of αβ T-cells. Epithelial and stromal cell populations in the thymus express the Notch DSL (Delta, Serrate and Lag2)ligands Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged 1 and Jagged 2, and induce Notch signalling in thymocytes that express the Notch receptor. At present there is nothing known about the role of the Delta-like 3 (Dll3) ligand in the immune system. Here we describe a novel cell autonomous role for Dll3 in αβ T-cell development. We show that Dll3 cannot activate Notch when expressed in trans but like other Notch ligands it can inhibit Notch signalling when expressed in cis with the receptor. The loss of Dll3 leads to an increase in Hes5 expression in double positive thymocytes and their increased production of mature CD4(+) and CD8(+) T cells. Studies using competitive irradiation chimeras proved that Dll3 acts in a cell autonomous manner to regulate positive selection but not negative selection of autoreactive T cells. Our results indicate that Dll3 has a unique function during T-cell development that is distinct from the role played by the other DSL ligands of Notch and is in keeping with other recent studies indicating that Dll1 and Dll3 ligands have non-overlapping roles during embryonic development.  相似文献   

3.
The three-dimensional microarchitecture of the thymus plays a unique role in directing T cell lineage commitment and development. This is supported by the fact that, in contrast to fetal thymic organ cultures, thymic stromal cell monolayer cultures (TSMC) fail to support T lymphopoiesis. Nevertheless, OP9-DL1 cell monolayer cultures induce T lineage commitment and differentiation. Thus, the inability of TSMC to support T lymphopoiesis may be due to a loss of Notch ligand expression and/or function during culture. In this study, we report that, in contrast to fetal thymic organ cultures, TSMC fail to maintain expression of the Notch ligands, Delta-like (Dll) 1 and Dll4, and concomitantly lose the ability to support T lymphopoiesis. Importantly, ectopic re-expression of Dll1 or Dll4 is sufficient to restore the ability of TSMC to support T lymphopoiesis. These findings demonstrate that maintenance of endogenous Dll1 or Dll4 expression by thymic stromal cells is required for the commitment and differentiation of T cells in the absence of a three-dimensional microenvironment.  相似文献   

4.
Delta-like 4 (Dll4) is a ligand of the Notch pathway family which has been widely studied in the context of tumor angiogenesis, its blockade shown to result in non-productive angiogenesis and halted tumor growth. As Dll4 inhibitors enter the clinic, there is an emerging need to understand their side effects, namely the systemic consequences of Dll4:Notch blockade in tissues other than tumors. The present study focused on the effects of systemic anti-Dll4 targeting in the bone marrow (BM) microenvironment. Here we show that Dll4 blockade with monoclonal antibodies perturbs the BM vascular niche of sub-lethally irradiated mice, resulting in increased CD31+, VE-Cadherin+ and c-kit+ vessel density, and also increased megakaryocytes, whereas CD105+, VEGFR3+, SMA+ and lectin+ vessel density remained unaltered. We investigated also the expression of angiocrine genes upon Dll4 treatment in vivo, and demonstrate that IGFbp2, IGFbp3, Angpt2, Dll4, DHH and VEGF-A are upregulated, while FGF1 and CSF2 are reduced. In vitro treatment of endothelial cells with anti-Dll4 reduced Akt phosphorylation while maintaining similar levels of Erk 1/2 phosphorylation. Besides its effects in the BM vascular niche, anti-Dll4 treatment perturbed hematopoiesis, as evidenced by increased myeloid (CD11b+), decreased B (B220+) and T (CD3+) lymphoid BM content of treated mice, with a corresponding increase in myeloid circulating cells. Moreover, anti-Dll4 treatment also increased the number of CFU-M and -G colonies in methylcellulose assays, independently of Notch1. Finally, anti-Dll4 treatment of donor BM improved the hematopoietic recovery of lethally irradiated recipients in a transplant setting. Together, our data reveals the hematopoietic (BM) effects of systemic anti-Dll4 treatment result from qualitative vascular changes and also direct hematopoietic cell modulation, which may be favorable in a transplant setting.  相似文献   

5.
Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4(+)and CD8(+)T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection.  相似文献   

6.
The in vitro induction of T lymphopoiesis needs the precise stereoscopic structure of thymus tissues as seen in fetal thymus organ culture. In this study, we demonstrated for the first time that the introduction of the intracellular region of Notch1 can induce T cells expressing TCR without any thymic environment. In the coculture on the monolayer of OP-9, which was originally known to support B cell specific development, hemopoietic progenitors developed into Thy-1(+)CD25(+) T lineage cells if the progenitor cells were infected with the retrovirus containing Notch1 intracellular domains. The Thy-1(+) cells progressed to a further developmental stage, CD4 and CD8 double-positive cells expressing TCR on the cell surface, if they were further cultured on OP-9 or in the thymus. However, T cell induction by intracellular Notch1 failed unless both OP-9 and IL-7 were present. It is notable that Notch2 and Notch3 showed an effect on T lymphopoiesis similar to that of Notch1. These results indicate that in vitro T lymphopoiesis is inducible by signaling via Notch family members in a lineage-specific manner but shares other stroma-derived factors including IL-7 with B lymphopoiesis.  相似文献   

7.
8.
Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.  相似文献   

9.
10.
Delta-like 1 (Dll1) is a mammalian ligand for Notch receptors. Interactions between Dll1 and Notch in trans activate the Notch pathway, whereas Dll1 binding to Notch in cis inhibits Notch signaling. Dll1 undergoes proteolytic processing in its extracellular domain by ADAM10. In this work we demonstrate that Dll1 represents a substrate for several other members of the ADAM family. In co-transfected cells, Dll1 is constitutively cleaved by ADAM12, and the N-terminal fragment of Dll1 is released to medium. ADAM12-mediated cleavage of Dll1 is cell density-dependent, takes place in cis orientation, and does not require the presence of the cytoplasmic domain of ADAM12. Full-length Dll1, but not its N- or C-terminal proteolytic fragment, co-immunoprecipitates with ADAM12. By using a Notch reporter construct, we show that Dll1 processing by ADAM12 increases Notch signaling in a cell-autonomous manner. Furthermore, ADAM9 and ADAM17 have the ability to process Dll1. In contrast, ADAM15 does not cleave Dll1, although the two proteins still co-immunoprecipitate with each other. Asn-353 present in the catalytic motif of ADAM12 and other Dll1-processing ADAMs, but absent in ADAM15, is necessary for Dll1 cleavage. Dll1 cleavage is reduced in ADAM9/12/15(-/-) mouse embryonic fibroblasts (MEFs), suggesting that the endogenous ADAM9 and/or ADAM12 present in wild type MEFs contribute to Dll1 processing. Finally, the endogenous Dll1 present in primary mouse myoblasts undergoes cleavage in confluent, differentiating myoblast cultures, and this cleavage is decreased by ADAM12 small interfering RNAs. Our findings expand the role of ADAM proteins in the regulation of Notch signaling.  相似文献   

11.
Periodic Delta-like 4 expression in developing retinal arteries   总被引:6,自引:0,他引:6  
During vascular development, Notch signalling plays important roles in cell-cell communication and cell fate decisions. We studied expression of Notch 1-4 and its ligand Delta-like 4 (Dll4) in the developing retinal vasculature. Dll4 mRNA is strongly expressed in endothelial cells at the very tips of growing vessels ('tip cells') and also in arteries, where it is expressed in a segmented 'tiger's tail' pattern. This implies that developing retinal arteries contain different types of endothelial cells, Dll4-positive and Dll4-negative. The Dll4-positive stripes do not correspond to any obvious morphological property of the vascular network but correlate to some extent with the distribution of platelet derived growth factor B (PDGF-B) mRNA. However, PDGF-B expression is neither as artery-specific nor as clearly segmented as Dll4. Possible target cells for Dll4 signalling are retinal astrocytes (Notch1 positive), arterial pericytes (Notch3 positive) or arterial endothelial cells themselves (Notch4 positive). However, there is no clear reciprocity of Notch and Dll4 expression that allows identification of the interacting cells. Nevertheless, Dll4 stripes are a novel property of immature arteries, the origin and function of which remain to be explained.  相似文献   

12.
Notch signalling controls the differentiation of haematopoietic progenitor cells (HPCs). Here, we show that loss of membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP14), a cell surface protease expressed in bone marrow stromal cells (BMSCs), increases Notch signalling in HPCs and specifically impairs B-lymphocyte development. When co-cultured with BMSCs in vitro, HPCs differentiation towards B lymphocytes is significantly compromised on MT1-MMP-deficient BMSCs and this defect could be completely rescued by DAPT, a specific Notch signalling inhibitor. The defective B-lymphocyte development could also be largely rescued by DAPT in vivo. MT1-MMP interacts with Notch ligand Delta-like 1 (Dll1) and promotes its cleavage on cell surface in BMSCs. Ectopic MT1-MMP cleaves Dll1 and results in diminished Notch signalling in co-cultured cells. In addition, recombinant MT1-MMP cleaves a synthetic Dll1 peptide at the same site where MT1-MMP cleaves Dll1 on the cell surface. Our data suggest that MT1-MMP directly cleaves Dll1 on BMSCs to negatively regulate Notch signalling to specifically maintain normal B-cell development in bone marrow.  相似文献   

13.
Expression of Notch receptors and ligands on immature and mature T cells   总被引:1,自引:0,他引:1  
Notch plays multiple roles in T cell development in the thymus and T cell differentiation in the periphery. In order to systematically examine the role of Notch in T cell biology, we determined the cell surface expression of all Notch receptors and ligands on various populations of T cells by using a panel of specific monoclonal antibodies we recently established. Notch1 and Notch3 were upregulated at double-negative (DN) 2-DN4 stages of immature thymocytes, then downregulated on mature single-positive thymocytes and peripheral T cells, but were rapidly upregulated again upon activation. Notch2 was consistently expressed on T cells while Notch4 was not. Jagged1 and Jagged2 were expressed at double-positive stage of immature T cells. Jagged2 was also inducible on mature T cells upon activation. In contrast, no Delta-like (Dll) 1 or Dll4 expression was observed on T cells. These comprehensive profiling of the expression of Notch receptors and ligands would be informative to fully understand the role of individual Notch receptors and ligands in T cell development and differentiation.  相似文献   

14.
15.
Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.  相似文献   

16.
Although the physiological consequences of Notch signaling in hematopoiesis have been extensively studied, the differential effects of individual notch cleavage products remain to be elucidated. Given that ADAM10 is a critical regulator of Notch and that its deletion is embryonically lethal, we generated mice that overexpress ADAM10 (ADAM10 transgenic [A10Tg]) at early stages of lympho- and myeloid development. Transgene expression resulted in abrogated B cell development, delayed T cell development in the thymus, and unexpected systemic expansion of CD11b(+)Gr-1(+) cells, also known as myeloid-derived suppressor cells. Mixed bone marrow reconstitution assays demonstrated that transgene expression altered hematopoiesis via a cell-intrinsic mechanism. Consistent with previously reported observations, we hypothesized that ADAM10 overexpression dysregulated Notch by uncoupling the highly regulated proteolysis of Notch receptors. This was confirmed using an in vitro model of hematopoiesis via culturing A10Tg hematopoietic Lineage(-)Sca-1(+)c-Kit(+) cells with OP-9 stromal cells in the presence or absence of Delta-like 1, a primary ligand for Notch. Blockade of the site 2 (S2) and site 3 (S3) cleavage of the Notch receptor demonstrated differential effects on hematopoiesis. OP9-DL1 cultures containing the ADAM10 inhibitor (S2 cleavage site) enhanced and rescued B cell development from wild-type and A10Tg Lineage(-)Sca-1(+)c-Kit(+) cells, respectively. In contrast, blockade of γ-secretase at the S3 cleavage site induced accumulation of the S2 product and consequently prevented B cell development and resulted in myeloid cell accumulation. Collectively, these findings indicate that the differential cleavage of Notch into S2 and S3 products regulated by ADAM10 is critical to hematopoietic cell-fate determination.  相似文献   

17.
Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.  相似文献   

18.
Hepatitis virus B (HBV) infection is one of the major causes of hepatocellular carcinomas (HCC). HBx protein encoded in HBV genome is one of the key viral factors leading to malignant transformation of infected cells. HBx functions by interfering with cellular functions, causing aberration in cellular behaviour and transformation. Notch signalling is a well-conserved pathway involved in cellular differentiation, cell survival and cell death operating in various types of cells. Aberration in the Notch signalling pathways is linked to various tumors, including HCC. The role of HBx on the Notch signalling in HCC, however, is still controversial. In this study, we reported that HBV genome-containing HCC cell line HepG2 (HepG2.2.15) expressed higher Notch1 and Delta-like 4 (Dll4), compared to the control HepG2 without HBV genome. This upregulation coincided with increased appearance of the cleavage of Notch1, indicating constitutively activated Notch signalling. Silencing of HBx specifically reduced the level of Dll4 and cleaved Notch1. The increase in Dll4 level was confirmed in clinical specimens of HCC lesion, in comparison with non-tumor lesions. Using specific signalling pathway inhibitors, we found that MEK1/2, PI3K/AKT and NF-κB pathways are critical for HBx-mediated Dll4 upregulation. Silencing of HBx clearly decreased the level of phosphorylation of Akt and Erk1/2. Upon silencing of Dll4 in HepG2.2.15, decreased cleaved Notch1, increased apoptosis and cell cycle arrest were observed, suggesting a critical role of HBx-Dll4-Notch1 axis in regulating cell survival in HCC. Furthermore, clonogenic assay confirmed the important role of Dll4 in regulating cell survival of HBV-genome containing HCC cell line. Taken together, we reported a link between HBx and the Notch signalling in HCC that affects cell survival of HCC, which can be a potential target for therapy.  相似文献   

19.
Each of the sensory patches in the epithelium of the inner ear is a mosaic of hair cells and supporting cells. Notch signalling is thought to govern this pattern of differentiation through lateral inhibition. Recent experiments in the chick suggest, however, that Notch signalling also has a prior function - inductive rather than inhibitory - in defining the prosensory patches from which the differentiated cells arise. Several Notch ligands are expressed in each patch, but their individual roles in relation to the two functions of Notch signalling are unclear. We have used a Cre-LoxP approach to knock out two of these ligands, Delta1 (Dll1) and Jagged1 (Jag1), in the mouse ear. In the absence of Dll1, auditory hair cells develop early and in excess, in agreement with the lateral inhibition hypothesis. In the absence of Jag1, by contrast, the total number of these cells is strongly reduced, with complete loss of cochlear outer hair cells and some groups of vestibular hair cells, indicating that Jag1 is required for the prosensory inductive function of Notch. The number of cochlear inner hair cells, however, is almost doubled. This correlates with loss of expression of the cell cycle inhibitor p27(Kip1) (Cdkn1b), suggesting that signalling by Jag1 is also needed to limit proliferation of prosensory cells, and that there is a core part of this population whose prosensory character is established independently of Jag1-Notch signalling. Our findings confirm that Notch signalling in the ear has distinct prosensory and lateral-inhibitory functions, for which different ligands are primarily responsible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号