首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In three field seasons, 2003-2005, bumble bees were collected in southern Sweden and eastern Denmark in search of microsporidian parasites. Of the 16 bumble bee species studied, microsporidia were found in Bombus hortorum, Bombus hypnorum, Bombus lapidarius, Bombus lucorum, Bombus pascuorum, Bombus pratorum, Bombus ruderarius, Bombus subterraneus and Bombus terrestris. Only one microsporidian species, Nosema bombi, was recorded. A microsporidium found in B. pratorum differed cytologically from microsporidia of the other host species. In the most frequently infected host, B. terrestris, the prevalence was 20.6%. Totally 1049 specimens were dissected. The light microscopic and ultrastructural cytology and pathology of N. bombi is described with focus on the variation recorded. Variation was especially prominent in the shape, size and coupling of spores, and in the length and arrangement of the polar filament. In four host species microsporidian infection was restricted to peripheral fat cells.  相似文献   

2.
Some microsporidian parasites belonging to the genus Nosema infect bees. Previous phylogenies of these parasites have produced alternative, conflicting relationships. We analyzed separately, and in combination, large and small subunit ribosomal DNA sequences of Nosema species infecting bees under neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian frameworks. We observed a sister relationship between Nosema ceranae and Nosema bombi, with Nosema apis as a basal member to this group. When compared to their respective hosts (Apis cerana, Bombus spp., and A. mellifera), 2 plausible evolutionary scenarios emerged. The first hypothesis involves a common ancestor of N. bombi host-switching from a historical Bombus lineage to A. cerana. The second suggests an ancestral N. ceranae host-switching to a species of Bombus. The reported events offer insight into the evolutionary history of these organisms and may explain host specificity and virulence of Nosema in these economically important insects.  相似文献   

3.
We investigated vertical and horizontal transmission as means by which entomopathogenic microsporidia may be isolated in their hosts. Ostrinia nubilalis larvae were challenged with microsporidia isolated from other stalk-boring and row crop Lepidoptera and were susceptible to seven species. Two species were horizontally transmitted. A Nosema sp. from Eoreuma loftini was transmitted among O. nubilalis larvae but not among larvae of the E. loftini host. This species was also vertically transmitted to the offspring of infected O. nubilalis females. An rDNA sequence showed the E. loftini isolate to be Nosema pyrausta, a naturally occurring species in O. nubilalis. Our results suggest that both horizontal and vertical transmission provide physiological barriers to host switching in the microsporidia, thus restricting the natural host range.  相似文献   

4.
A new microsporidian parasite Nosema chrysorrhoeae n. sp., isolated in Bulgaria from the browntail moth (Euproctis chrysorrhoea L.), is described. Its life cycle includes two sequential developmental cycles that are similar to the general developmental cycles of the Nosema-like microsporidia and are indistinguishable from those of two Nosema spp. from Lymantria dispar. The primary cycle takes place in the midgut tissues and produces binucleate primary spores. The secondary developmental cycle takes place exclusively in the silk glands and produces binucleate environmental spores. N. chrysorrhoeae is specific to the browntail moth. Phylogenetic analysis based on the ssu rRNA gene sequence places N. chrysorrhoeae in the Nosema/Vairimorpha clade, with the microsporidia from lymantriid and hymenopteran hosts. Partial sequences of the lsu rRNA gene and ITS of related species Nosema kovacevici (Purrini K., Weiser J., 1975. Natürliche Feinde des Goldafters, Euproctis chrysorrhoea L., im Gebiet von Kosovo, FSR Jugoslawien. Anzeiger fuer Sch?dlingskunde, Pflanzen-Umweltschutz, 48, 11-12), Nosema serbica Weiser, 1963 and Nosema sp. from Lymantria monacha was obtained and compared with N. chrysorrhoeae. The molecular data indicate the necessity of future taxonomic reevaluation of the genera Nosema and Vairimorpha.  相似文献   

5.
Thirty-one species of microsporidia, isolated from insects and stored in liquid nitrogen for up to 25 yr, were infectious when removed from liquid nitrogen. The natural hosts of all of these microsporidia were terrestrial insects, representing six different insect orders: Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, and Orthoptera. All microsporidia from terrestrial insects that were tested survived storage in liquid nitrogen, while Nosema algerae , a microsporidium from aquatic mosquito hosts did not survive freezing in liquid nitrogen. A Nosema species from the alfalfa weevil, Hypera postica , lost some infectivity in a water storage medium after 25 yr in liquid nitrogen. Liquid nitrogen storage of microsporidian spores in 50% and 100% glycerol media reduced loss of infectivity and is recommended for extended storage of microsporidia from terrestrial insect hosts.  相似文献   

6.
The gypsy moth, Lymantria dispar L. (Lepidoptera, Lymantriidae), a serious defoliator of deciduous trees, is an economically important pest when population densities are high. Outbreaking populations are, however, subject to some moderating influences in the form of entomopathogens, including several species of microsporidia. In this study, we conducted laboratory experiments to investigate the transmission of an unusual Nosema sp. isolated from L. dispar in Schweinfurt, Germany; this isolate infects only the silk glands and, to a lesser extent, Malpighian tubules of the larval host. The latent period ended between 8 and 15 days after oral inoculation and spores were continuously released in the feces of infected larvae until pupation. Exclusion of feces from the rearing cages resulted in a 58% decrease in horizontal transmission. The silk of only 2 of 25 infected larvae contained microsporidian spores. When larvae were exposed to silk that was artificially contaminated with Nosema sp., 5% became infected. No evidence was found for venereal or transovum (including transovarial) transmission of this parasite.  相似文献   

7.
Fresh and frozen spores of the microsporidia Nosema apis and Nosema bombi were fixed using various fixatives at different times and temperatures. Paraformaldehyde and technical formaldehyde gave results comparable to or better than glutaraldehyde. Increased fixation temperature improved the fixation of spores from terrestrial hosts. Freezing did not destroy the cytology of the spore.  相似文献   

8.
The outcome of mixed infection by three species of microsporidia in the genera Endoreticulatus, Nosema, and Vairimorpha, isolated from different populations of Lymantria dispar in Bulgaria, was evaluated in the laboratory. All possible combinations of two species were administered either simultaneously or sequentially to larvae, and mortality, duration of development, and larval weight at 20 days post-infection (simultaneous inoculation) or 23 days post-infection (sequential inoculation) were chosen as the outcome variables. Larvae were also dissected and the presence of each species of microsporidia and the tissues infected were recorded for each treatment. Effects of infection were dependent on both host sex and the type of exposure. Infected larvae were more likely to die than uninfected larvae, but there were no differences in mortality between single and mixed infections. Addition of Endoreticulatus to infections of Nosema or Vairimorpha significantly increased duration of development to the fourth ecdysis; this effect was additive. Addition of Nosema or Vairimorpha to an existing infection had no such effect. When Nosema was administered simultaneously with Endoreticulatus or Vairimorpha, infected larvae weighed more than larvae that had single infections with either pathogen. Nosema was displaced from the silk glands by Vairimorpha and Nosema suppressed octospore formation by Vairimorpha in fat body. The histological evidence combined with the data on larval weight supports the hypothesis that competition occurred in mixed infections.  相似文献   

9.
ABSTRACT. Phylogenetic analysis of the small subunit ribosomal DNA of a broad range of representative microsporidia including five species from humans ( Enterocytozoon bieneusi, Nosema corneum, Septata intestinalis, Encephalitozoon hellem and Encephalitozoon cuniculi ), reveals that human microsporidia are polyphyletic in origin. Septata intestinalis and E. hellem are very similar to the mammalian parasite E. cuniculi . Based on the results of our phylogenetic analysis, we suggest that S. intestinalis be designated Encephalitozoon intestinalis . Furthermore, analysis of our data indicates that N. corneum is much more closely related to the insect parasite Endoreticulatus schubergi than it is to other Nosema species. This finding is supported by recent studies which have shown a similarity between E. schubergi and N. corneum based on the origin and development of the parasitophorous vacuole. Thus these opportunistic microsporidian parasites can originate from hosts closely or distantly related to humans. Finally, the phylogeny based on small subunit ribosomal DNA sequences is highly inconsistent with traditional classifications based on morphological characters. Many of the important morphological characters (diplokaryon, sporophorous vesicle, and meiosis) appear to have multiple origins.  相似文献   

10.
Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation.  相似文献   

11.
A polymerase chain reaction (PCR) based method was developed for the specific and sensitive diagnosis of the microsporidian parasite Nosema bombi in bumble bees (Bombus spp.). Four primer pairs, amplifying ribosomal RNA (rRNA) gene fragments, were tested on N. bombi and the related microsporidia Nosema apis and Nosema ceranae, both of which infect honey bees. Only primer pair Nbombi-SSU-Jf1/Jr1 could distinguish N. bombi (323bp amplicon) from these other bee parasites. Primer pairs Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2 were then tested for their sensitivity with N. bombi spore concentrations from 10(7) down to 10 spores diluted in 100 microl of either (i) water or (ii) host bumble bee homogenate to simulate natural N. bombi infection (equivalent to the DNA from 10(6) spores down to 1 spore per PCR). Though the N. bombi-specific primer pair Nbombi-SSU-Jf1/Jr1 was relatively insensitive, as few as 10 spores per extract (equivalent to 1 spore per PCR) were detectable using the N. bombi-non-specific primer pair ITS-f2/r2, which amplifies a short fragment of approximately 120 bp. Testing 99 bumble bees for N. bombi infection by light microscopy versus PCR diagnosis with the highly sensitive primer pair ITS-f2/r2 showed the latter to be more accurate. PCR diagnosis of N. bombi using a combination of two primer pairs (Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2) provides increased specificity, sensitivity, and detection of all developmental stages compared with light microscopy.  相似文献   

12.
By sequencing the entire ribosomal RNA (rRNA) gene region of Nosema heliothidis isolated from cotton bollworm (Helicoverpa armigera), we showed that its gene organization is similar to the type species, Nosema bombycis: the 5'-large subunit rRNA (2,490 bp)-internal transcribed spacer (192 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (274 bp)-5S rRNA (115 bp)-3'. We constructed two phylogenetic trees, analyzed phylogenetic relationships, examined rRNA organization of microsporidia, and compared the secondary structure of small subunit rRNA with closely related microsporidia. The latter two features may provide important information for the classification and phylogenetic analysis of microsporidia.  相似文献   

13.
Local adaptation theory predicts that, on average, most parasite species should be locally adapted to their hosts (more suited to hosts from local than distant populations). Local adaptation has been studied for many horizontally transmitted parasites, however, vertically transmitted parasites have received little attention. Here we present the first study of local adaptation in an animal/parasite system where the parasite is vertically transmitted. We investigate local adaptation and patterns of virulence in a crustacean host infected with the vertically transmitted microsporidian Nosema granulosis. Nosema granulosis is vertically transmitted to successive generations of its crustacean host, Gammarus duebeni and infects up to 46% of adult females in natural populations. We investigate local adaptation using artificial horizontal infection of different host populations in the UK. Parasites were artificially inoculated from a donor population into recipient hosts from the sympatric population and into hosts from three allopatric populations in the UK. The parasite was successfully established in hosts from all populations regardless of location, infecting 45% of the recipients. Nosema granulosis was vertically (transovarially) transmitted to 39% of the offspring of artificially infected females. Parasite burden (intensity of infection) in developing embryos differed significantly between host populations and was an order of magnitude higher in the sympatric population, suggesting some degree of host population specificity with the parasite adapted to its local host population. In contrast with natural infections, artificial infection with the parasite resulted in substantial virulence, with reduced host fecundity (24%) and survival (44%) of infected hosts from all the populations regardless of location. We discuss our findings in relation to theories of local adaptation and parasite-host coevolution.  相似文献   

14.
A new species of microsporidia from Drosophila melanogaster was investigated by light and electron microscopy and by ribosomal RNA (rRNA) sequencing. This microsporidium and the previously described Nosema kingi and Nosema acridophagus have been transferred to the new genus Tubulinosema gen. nov. with the following characters: nuclei are in diplokaryotic arrangement during the life cycle. All stages are in direct contact with the host cell cytoplasm, slightly anisofilar polar tube with the last coils being smaller in diameter arranged in one or two rows on both sides of the diplokaryon and small tubuli on the surface of late meronts. Spores are oval or slightly pyriform. Thick endospore wall, thinner over anchoring disc. This new genus and the genus Brachiola have been placed in a new family Tubulinosematidae fam. nov. Phylogenetic analysis of small subunit rRNA sequences by different methods placed Tubulinosema spp. in one clade with the genus Brachiola forming its sister clade, which is distant from the clade containing the true Nosema spp. including Nosema bombycis.  相似文献   

15.
Lymantria dispar (L.) (Lepidoptera: Lymantriidae) larvae can be infected in the laboratory with a variety of entomopathogenic microsporidia. In many cases, however, L. dispar is only a semi‐permissive host for such infections. In this study, we analyzed changes in the melanization of hemolymph and hemocyte numbers in L. dispar larvae after inoculation with various entomopathogenic microsporidia. We compared the infections produced by microsporidia isolated from L. dispar and infections produced by isolates from other Lepidoptera to which L. dispar is only a semi‐permissive host. Microsporidiosis induced a significant activation of the prophenoloxidase system leading to melanization; activation was highest when the pathogen caused heavy infections of the fat body, which was the case with two microsporidia originally isolated from L. dispar. Infection of only the silk glands or light infection of the fat body by two Vairimorpha spp. from other lepidopteran hosts elicited a lower response. Very light infections caused by a microsporidium isolated from Malacosoma americanum were not accompanied by elevated hemolymph melanization activity. Heavy infections by Endoreticulatus spec. that remained restricted to the gut tissue likewise did not elicit melanization. One Vairimorpha spec. from L. dispar induced a significant increase in total hemocyte numbers; the other infections led to temporarily decreased numbers. Microscopic examinations showed that parts of infected tissue were encapsulated by hemocytes. We conclude that measured alterations in hemolymph melanization and hemocyte numbers were likely to be induced by the damaging effects of heavy infections. Observed defense responses did not prevent the progression of infections.  相似文献   

16.
The amphipod crustacean Gammarus duebeni hosts two species of vertically transmitted microsporidian parasites, Nosema granulosis and Microsporidium sp. A. Here it is demonstrated that these co-occurring parasite species both cause infected females to produce female-biased broods. A survey of European G. duebeni populations demonstrates that these two parasites co-occur in six of 10 populations. These findings contrast with the theoretical prediction that two vertically transmitted feminizing parasites should not coexist in a panmictic population of susceptible hosts at equilibrium. Possible explanations for the co-occurrence of the two feminizing microsporidia in G. duebeni include the recent invasion of a new parasite, horizontal transmission of one or both parasites and the spread of alleles for resistance to the dominant parasite in host populations.  相似文献   

17.
A new method of pebrine inspection of silkworm egg using multiprimer PCR   总被引:3,自引:0,他引:3  
Using a mixture of several PCR primers, we evaluated whether multiprimer PCR is practically useful for the early and simultaneous detection of several kinds of microsporidia that cause silkworm pebrine. When genomic DNA extracted from silkworm eggs infected with Nosema bombycis was used as the DNA template, the specific DNA sequences were amplified by multiprimer PCR. In addition, similar results were obtained even when genomic DNA extracted from silkworms infected with N. bombycis was used as the DNA template. These findings suggest that multiprimer PCR using several primers designed for this study is practically useful for pebrine inspection of silkworm eggs.  相似文献   

18.
The amphipod crustacean Gammarus duebeni hosts two feminizing microsporidian parasites, Nosema granulosis and Microsporidium sp. Samples of G. duebeni were collected from three sites on the Scottish island of Great Cumbrae and screened for microsporidia using polymerase chain reaction. Associations between the prevalence of the two feminizing parasites and haplotypes of the host mitochondrial gene cytochrome oxidase I (COI) were investigated. The prevalence of both parasites varied significantly among the host's COI haplotypes, suggesting that horizontal transmission is rare or absent in the life cycles of the feminizing microsporidia and that all transmission must therefore be vertical. Life cycles in which all transmission is vertical are common among bacterial parasites but have never before been demonstrated in Eukaryotic parasites.  相似文献   

19.
Some differences in trehalose catabolism were found for terrestrial and aquatic microsporidian species (Undeen, Van der Meer, 1999). In microsporidia species from aquatic hosts, the spore extrusion causes the intrasporal trehalose hydrolysis by trehalase that is followed by the drastic rise of reducing sugars (glucose) concentration. On the contrary, in tested terrestrial microsporidian species, total and reducing sugars remain unchanged through the germination. In this study we demonstrate by means of the enzymatic and paper chromatography methods, that in spores of microsporidia Nosema grylli, infecting fat bodies of crickets Gryllus bimaculatus, neither an increase of glucose concentration nor a reduction in intrasporal trehalose content takes place during the spore discharge. In this respect N. grylli is close to other terrestrial species. However, we have revealed in N. grylli spores activity of alpha,alpha-trehalase (EC 3.2.1.28) with acid pH-optimum like it was found by other authors in spores of aquatic microsporidia N. algerae. This result differs from the neutral pH-optimum (7.0) of trehalse of other terrestrial microsporidia N. apis. Concentration of trehalose in N. grylli spores reduces during long-term storage. All attempts to detect an activity of trehalose phosphorylase (synthase) (K phi 2.4.1.64), other potential key enzyme for trehalose catabolism in N. grylli spores have failed. The absence of changes of the sugar content in terrestrial microsporidian spores during the extrusion indicates, that the main physiological role of trehalose hydrolysis by trehalase in these species is catabolism of energy reserves for providing the long-term survival in the environment.  相似文献   

20.
【目的】柞蚕微粒子病的病原为柞蚕微孢子虫Nosemapernyi,为解明柞蚕微孢子虫微管蛋白基因的序列信息,明确柞蚕微孢子虫的系统分类学地位。【方法】采用RT-.PCR、3′RACE(Rapid amplification ofcDNAends)等技术克隆得到了柞蚕微孢子虫的α、β和y-微管蛋白基因,并利用α、β-微管蛋白序列,分别采用NJ、ML法构建进化树。【结果】将克隆得到的基因序列提交NCBI(GenBank登录号:KF154086、KF023271、KF740389)。构建的系统发育树显示,微孢子虫类以一个独立群位于真菌群体中,与真菌的虫霉门关系较近,且与担子菌、球囊菌、壶菌、接合菌及部分子囊菌互为姐妹群。从部分微孢子虫的系统发育分析结果可以看出,20种微孢子虫分为2个分支,柞蚕微孢子虫与其他Nosema属聚为一类。【结论】本研究克隆得到了柞蚕微孢子虫α、β和y-微管蛋白基因,系统发育分析为更进一步了解柞蚕微孢子虫奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号