首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of light acquisition and utilization by individuals in intraspecific competition was evaluated by determining growth and photosynthesis of individual plants in a dense monospecific stand of an annual, Xanthium canadense. Photosynthesis of individual plants in the stand was calculated using a canopy photosynthesis model in which leaf photosynthesis was assumed to be function of leaf nitrogen content and light availability. The estimated photosynthetic rates of individuals were strongly correlated with the measured growth rates. Photosynthetic rates per unit aboveground mass (RPR, relative photosynthetic rate) increased with increasing aboveground mass, suggesting asymmetric (one-sided) competition in the stand. However, larger individuals had similar RPRs, suggesting symmetric (two-sided) competition. These results were consistent with the observation that size inequality over the whole stand increased with growth, but it remained stable among the larger individuals. The RPR of an individual was calculated as the product of absorbed photon flux per unit aboveground mass (Φmass) and light use efficiency (LUE, photosynthesis per unit absorbed photon flux). Φmass indicates the efficiency of light acquisition, and was higher in larger individuals in the stand, while LUE was highest in individuals with intermediate aboveground mass. LUE depends on leaf nitrogen content. At an early stage, leaf nitrogen contents of smaller individuals were similar to those that maximize LUE. Light availability to smaller individuals decreased as they grew, while their nitrogen contents did not change markedly, which decreased their LUE. We concluded that asymmetric competition among individuals in the stand resulted mainly from lower efficiencies in both light acquisition and light use by smaller individuals. Received: 31 January 1998 / Accepted: 12 November 1998  相似文献   

2.
African violet (Saintpaulia ionantha H. Wendl) is one of the most easily and commonly tissue-cultured ornamental plants. Despite this, there are limited reports on photosynthetic capacity and its impact on the plant quality during acclimatization. Various growth, photosynthetic and biochemical parameters and activities of antioxidant enzymes and dehydrins of micropropagated plants were assessed under three light intensities (35, 70, and 100 µmol m?2 s?1 photosynthetic photon flux density – PPFD). Fresh and dry plant biomass, plant height, and leaf area were optimal with high irradiance (70–100 µmol m?2 s?1 PPFD). Chlorophyll and carotenoid contents and net photosynthesis were optimal in plants grown under 70 µmol m?2 s?1 PPFD. Stomatal resistance, malondialdehyde content, and Fv/Fm values were highest at low light irradiance (35 µmol m?2 s?1 PPFD). The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, increased as light irradiance increased, signaling that high light irradiance was an abiotic stress. The accumulation of 55, 33, and 25 kDa dehydrins was observed with all light treatments although the expression levels were highest at 35 µmol m?2 s?1 PPFD. Irradiance at 70 µmol m?2 s?1 PPFD was suitable for the acclimatization of African violet plants. Both low and high irradiance levels (35 and 100 µmol m?2 s?1 PPFD) induced the accumulation of antioxidants and dehydrins in plants which reveals enhanced stress levels and measures to counter it.  相似文献   

3.
Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20–45, 200–350, and 750–800 mol m-2s-1) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 mol m-2s-1) and shaded lower portions (maximum PPFD of 140 mol m-2s-1) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 mol m-2s-1. Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.Abbreviations ANOVA analysis of variance - CAM Crassulacean acid metabolism - DW dry weight - PPFD photosynthetic photon flux density - SNK Student-Newman-Keuls (to whom all correspondence should be sent-present address and reprint requests);  相似文献   

4.
Growth response of cotton to CO2 enrichment in differing light environments   总被引:1,自引:0,他引:1  
Experiments were conducted to examine the growth responses of cotton (Gossypium hirsutum L. cv. Coker 315) to CO2 enrichment under different light regimes. Plants were exposed to 350 or 700 μl l?1 CO2 and six light treatments differing in photosynthetic period length (8 or 16 h) and in photosynthetic photon flux density (PPFD) for 32 days of vegetative growth. Higher PPFD (1 100 μmol m?2 s?1) was provided by a combination of high intensity discharge and incandescent lamps (HID), and lower PPFD (550 μmol m?2 s?1) was provided by fluorescent and incandescent lamps (F) or HID and incandescent lamps with shade cloth (HIDs). Growth was generally much slower with the 8-h photosynthetic periods, but the growth stimulation by CO2 enrichment was larger than with 16-h photosynthetic periods. After 28 to 32 days of treatment, the growth enhancement with CO2 enrichment was 152 and 78% for 8- and 16-h photosynthetic periods, respectively, under HID; 100 and 77% in F, and 77 and 56% in HIDs. The higher PPFD of HID positively influenced the CO2 effect only at the slower growth rate in the 8-h light period. The stimulation of leaf area expansion by CO2 enrichment was also greater with the 8-h photosynthetic period for all light sources. These results, and others on net assimilation rate, shoot to root dry weight ratios and specific leaf weights, suggest that the growth response to CO2 enrichment with the longer photosynthetic period was depressed by limiting factors, perhaps nutritional, in the growth environment. The results also show that extensive variability in CO2 response can occur under light intensities which are often used in growth chamber experiments.  相似文献   

5.
Light use efficiency (LUE) is an important variable in carbon cycle and climate change research. We present an investigation of remotely estimating midday LUE using the green chlorophyll index (CIgreen) derived from the cloud-free Moderate Resolution Imaging Spectroradiometer (MODIS) images in maize, coniferous forest and grassland. Similar temporal patterns are observed in both canopy chlorophyll content and midday LUE which indicates that the chlorophyll content in the maize canopy servers as a proxy of midday LUE (R2 = 0.736, p < 0.001). Therefore, the CIgreen, tested as a good indicator of canopy chlorophyll content (R2 = 0.840, p < 0.001), has been demonstrated to be a reliable candidate in providing reasonable estimates of midday LUE with determination coefficient R2 equals to 0.820 and a root mean square error (RMSE) of 0.002 mol CO2 per mol incident photosynthetic photon flux density (PPFD). Further validation of the prediction model derived from the maize site demonstrates that the CIgreen has potential to be applied in the coniferous forest and grassland ecosystems with RMSE of 0.005 and 0.004 mol CO2 mol−1 PPFD, respectively. A comparison analysis between different vegetation types is included and these results could be helpful in the development of future LUE and terrestrial models.  相似文献   

6.
Most models of carbon gain as a function of photosynthetic irradiance assume an instantaneous response to increases and decreases in irradiance. High- and low-light-grown plants differ, however, in the time required to adjust to increases and decreases in irradiance. In this study the response to a series of increases and decreases in irradiance was observed in Chrysanthemum × morifolium Ramat. “Fiesta” and compared with calculated values assuming an instantaneous response. There were significant differences between high- and low-light-grown plants in their photosynthetic response to four sequential photosynthetic photon flux density (PPFD) cycles consisting of 5-minute exposures to 200 and 400 micromoles per square meter per second (μmol m−2s−1). The CO2 assimilation rate of high-light-grown plants at the cycle peak increased throughout the PPFD sequence, but the rate of increase was similar to the increase in CO2 assimilation rate observed under continuous high-light conditions. Low-light leaves showed more variability in their response to light cycles with no significant increase in CO2 assimilation rate at the cycle peak during sequential cycles. Carbon gain and deviations from actual values (percentage carbon gain over- or underestimation) based on assumptions of instantaneous response were compared under continuous and cyclic light conditions. The percentage carbon gain overestimation depended on the PPFD step size and growth light level of the leaf. When leaves were exposed to a large PPFD increase, the carbon gain was overestimated by 16 to 26%. The photosynthetic response to 100 μmol m−2 s−1 PPFD increases and decreases was rapid, and the small overestimation of the predicted carbon gain, observed during photosynthetic induction, was almost entirely negated by the carbon gain underestimation observed after a decrease. If the PPFD cycle was 200 or 400 μmol m−2 s−1, high- and low-light leaves showed a carbon gain overestimation of 25% that was not negated by the underestimation observed after a light decrease. When leaves were exposed to sequential PPFD cycles (200-400 μmol m−2 s−1), carbon gain did not differ from leaves exposed to a single PPFD cycle of identical irradiance integral that had the same step size (200-400-200 μmol m−2 s−1) or mean irradiance (200-300-200 μmol m−2 s−1).  相似文献   

7.
Singh  Preety  Srivastava  N.K.  Mishra  A.  Sharma  S. 《Photosynthetica》2000,37(4):509-517
Controlled environment chamber and glasshouse studies were conducted on six herbaceous annual species grown at 350 (AC) and 700 (EC) mol(CO2) mol-1 to determine whether growth at EC resulted in acclimation of the apparent quantum yield of photosynthesis (QY) measured at limiting photosynthetic photon flux density (PPFD), or in acclimation of net photosynthetic rate (P N) measured at saturating PPFD. It was also determined whether acclimation in P N at limiting PPFD was correlated with acclimation of carboxylation efficiency or ribulose-1,5-bisphosphate (RuBP) regeneration rate measured at saturating PPFD. Growth at EC reduced both the QY and P N at limiting PPFD in three of the six species. The occurrence of photosynthetic acclimation measured at a rate limiting PPFD was independent of whether photosynthetic acclimation was apparent at saturating measurement PPFD. At saturating measurement PPFD, acclimation to EC in the apparent carboxylation efficiency and RuBP regeneration capacity also occurred independently. Thus at least three components of the photosynthetic system may adjust independently when leaves are grown at EC. Estimates of photosynthetic acclimation at both high and low PPFD are necessary to accurately predict photosynthesis at the whole plant or canopy level as [CO2] increases.  相似文献   

8.
According to the light-use efficiency model, differential biomass production among willow varieties may be attributed either to differences in the amount of light intercepted, the efficiency with which the intercepted light is converted to aboveground biomass, or both. In this study, variation in aboveground biomass production (AGBP) was analyzed in relation to fraction of incoming radiation intercepted (IPARF) and light-use efficiency (LUE) for five willow varieties. The plants were grown in a short-rotation woody crop (SRWC) system and were in their first year of regrowth on a 5 year old root system. The study was conducted during a two-month period (June 15th–August 15th, 2001) when growing conditions were deemed most favorable. The objectives were: (1) to assess the relative importance of IPARF in explaining variation in AGBP, and (2) to identify the key drivers of variation in LUE from a suite of measured leaf and canopy-level traits. Aboveground biomass production varied nearly three-fold among genotypes (3.55–10.02 Mg ha?1), while LUE spanned a two-fold range (1.21–2.52 g MJ?1). At peak leaf area index (LAI), IPARF ranged from 66%–92%. Nonetheless, both IPARF and LUE contributed to AGBP. An additive model combining photosynthesis on leaf area basis (Aarea), leaf mass per unit area (LMA), and light extinction coefficient (k) produced the most compelling predictors of LUE. In a post-coppice willow crop, the ability to maximize IPARF and LUE early in the growing season is advantageous for maximizing biomass production.  相似文献   

9.

Background and Aims

Theory for optimal allocation of foliar nitrogen (ONA) predicts that both nitrogen concentration and photosynthetic capacity will scale linearly with gradients of insolation within plant canopies. ONA is expected to allow plants to efficiently use both light and nitrogen. However, empirical data generally do not exhibit perfect ONA, and light-use optimization per se is little explored. The aim was to examine to what degree partitioning of nitrogen or light is optimized in the crowns of three tropical canopy tree species.

Methods

Instantaneous photosynthetic photon flux density (PPFD) incident on the adaxial surface of individual leaves was measured along vertical PPFD gradients in tree canopies at a frequency of 0·5 Hz over 9–17 d, and summed to obtain the average daily integral of PPFD for each leaf to characterize its insolation regime. Also measured were leaf N per area (Narea), leaf mass per area (LMA), the cosine of leaf inclination and the parameters of the photosynthetic light response curve [photosynthetic capacity (Amax), dark respiration (Rd), apparent quantum yield (ϕ) and curvature (θ)]. The instantaneous PPFD measurements and light response curves were used to estimate leaf daily photosynthesis (Adaily) for each leaf.

Key Results

Leaf Narea and Amax changed as a hyperbolic asymptotic function of the PPFD regime, not the linear relationship predicted by ONA. Despite this suboptimal nitrogen partitioning among leaves, Adaily did increase linearly with PPFD regime through co-ordinated adjustments in both leaf angle and physiology along canopy gradients in insolation, exhibiting a strong convergence among the three species.

Conclusions

The results suggest that canopy tree leaves in this tropical forest optimize photosynthetic use of PPFD rather than N per se. Tropical tree canopies then can be considered simple ‘big-leaves’ in which all constituent ‘small leaves’ use PPFD with the same photosynthetic efficiency.Key words: Optimal resource allocation, nitrogen, photosynthetic capacity, leaf mass per area, tropical trees, radiation use efficiency, scaling, leaf angle, canopy architecture, big leaf model  相似文献   

10.
We studied the interactions of the CO(2)-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 μmol m(-2) s(-1) PPFD) and low inorganic carbon (50 μM Ci). Mass spectrometric and polarographic analysis revealed that mediated CO(2) uptake along with both active Na(+)-independent and Na(+)-dependent HCO(3)(-) transport, likely through Na(+)/HCO(3)(-) symport, were employed to concentrate Ci internally. Combined transport of CO(2) and HCO(3)(-) required about 30 kJ mol(-1) of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40-50% of maximum values by 50 μmol m(-2) s(-1) PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 μmol m(-2) s(-1) PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 μmol m(-2) s(-1). Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 μmol photons m(-2) s(-1) and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO(2) and by internal CO(2)/HCO(3)(-) cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO(2) fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open.  相似文献   

11.
The objective was to reduce in vitro production costs while retaining or improving plant quality, in particular the suitability for pot plant production. Plants were grown at photosynthetic photon flux densities (PPFD) of 0–40 μmol m-2 s-1 and sucrose concentrations of 3–7% during the multiplication phase and the effects of sucrose, BA, and NAA during root formation were investigated. Ex vitro growth were tested in both experiments. A small reduction in the rhizome multiplication rate was found with increasing PPFD and sucrose concentration. Increasing sucrose concentration reduced the number of aerial shoots. Aerial shoots were etiolated when cultured in darkness and their number increased with increasing PPFD at 3% sucrose, whereas PPFD did not affect the number of aerial shoots at 5 or 7% sucrose. During the multiplication phase a synergistic promoting effect of PPFD and sucrose was observed on root formation. Root formation after transfer to rooting medium was affected by sucrose and PPFD during the multiplication phase. PPFD did not influence root formation after propagation on 7% sucrose, whereas on 3 or 5 % sucrose root formation was gradually inhibited when PPFD was decreased below 17 μmol m-2 s-1. The formation of thick roots was promoted by propagation in light, and not influenced by sucrose concentration. Ex vitro growth was not affected by in vitro conditions, except for 7% sucrose during the multiplication phase that reduced flowering. Root formation on rooting medium was reduced by BA and promoted both by NAA and high levels of sucrose. The root inhibiting effect of BA could not completely be overcome by simultaneous application of NAA and high sucrose concentrations. Thick roots were only produced in the presence of NAA, and not affected by sucrose treatment. Ex vitro flowering was negatively influenced by the presence of BA during root formation and by high levels of sucrose if BA was absent in the rooting medium. High sucrose levels and NAA could partially compensate for the negative effect of BA on flowering. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
金钟藤叶片的气体交换特性   总被引:6,自引:2,他引:4  
沈浩  洪岚  叶万辉  曹洪麟  徐志防  韦霄   《广西植物》2006,26(3):313-316,303
用LI-6400便携式光合测定系统(Li-CorInc.,USA)对广州林区新发现的入侵杂草金钟藤(Merremiaboisiana)叶片的气体交换进行了测定。结果表明(1)净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(E)的日变化均表现为单峰型曲线,中午金钟藤未出现光合作用抑制;最大光合速率可达20μmolCO2.m-2.s-1左右,Pn日平均值为8.8±0.75μmolCO2.m-2.s-1。(2)金钟藤光合作用的光饱和点较高,为1000~1200μmolphotons.m-2.s-1,表现出比较典型的阳生植物的特性。结果表明,金钟藤在自然环境中具有快速生长的特性可能与其较强和较稳定的光合能力有关。研究的初步结果对了解金钟藤迅速生长、具有高生产力和强大入侵力的原因提供了进一步深入探讨的思路和基础数据。  相似文献   

13.
The aim of this study was to predict crop growth of year-round cut chrysanthemum (Chrysanthemum morifolium Ramat.) based on an empirical model of potential crop growth rate as a function of daily incident photosynthetically active radiation (PAR, MJ m-2 d-1), using generalized estimated parameters of the expolinear growth equation. For development of the model, chrysanthemum crops were grown in four experiments at different plant densities (32, 48, 64 and 80 plants m-2), during different seasons (planting in January, May-June and September) and under different light regimes [natural light, shading to 66 and 43 % of natural light, and supplementary assimilation light (ASS, 40-48 micro mol m-2 s-1)]. The expolinear growth equation as a function of time (EXPOT) or as a function of incident PAR integral (EXPOPAR) effectively described periodically measured total dry mass of shoot (R2 > 0.98). However, growth parameter estimates for the fitted EXPOPAR were more suitable as they were not correlated to each other. Coefficients of EXPOPAR characterized the relative growth rate per incident PAR integral [rm,i (MJ m-2)-1] and light use efficiency (LUE, g MJ-1) at closed canopy. In all four experiments, no interaction effects between treatments on crop growth parameters were found. rm,i and LUE were not different between ASS and natural light treatments, but were increased significantly when light levels were reduced by shading in the summer experiments. There was no consistent effect of plant density on growth parameters. rm,i and LUE showed hyperbolic relationships to average daily incident PAR averaged over 10-d periods after planting (rm,i) or before final harvest (LUE). Based on those relationships, maximum relative growth rate (rm, g g-1 d-1) and maximum crop growth rate (cm, g m-2 d-1) were described successfully by rectangular hyperbolic relationships to daily incident PAR. In model validation, total dry mass of shoot (Wshoot, g m-2) simulated over time was in good agreement with measured ones in three independent experiments, using daily incident PAR and leaf area index as inputs. Based on these results, it is concluded that the expolinear growth equation is a useful tool for quantifying cut chrysanthemum growth parameters and comparing growth parameter values between different treatments, especially when light is the growth-limiting factor. Under controlled environmental conditions the regression model worked satisfactorily, hence the model may be applied as a simple tool for understanding crop growth behaviour under seasonal variation in daily light integral, and for planning cropping systems of year-round cut chrysanthemum. However, further research on leaf area development in cut chrysanthemum is required to advance chrysanthemum crop growth prediction.  相似文献   

14.
光能利用效率(LUE)是评价植物叶片光能利用能力的重要参数,更是影响生态系统生产力大小和质量的主要因素.本文基于植物光合作用对光响应的机理模型推导出植物叶片的光能利用效率模型以及叶片的最大光能利用效率(LUEmax)和对应的饱和光强(IL-sat)的数学表达式,并用光能利用效率模型研究了番茄幼苗叶片在CO2浓度分别为350、450、550和650 μmol·mol-1下的光能利用效率.拟合结果表明: 所推导的叶片光能利用效率模型可以很好地描述4种CO2浓度条件下番茄幼苗叶片的光能利用效率;在这4种CO2浓度条件下,番茄的LUEmax在光合有效辐射(I)为70~90 μmol·m-2·s-1时就可以达到;番茄在CO2浓度为550和650 μmol·mol-1时叶片的LUEmaxIL-sat没有差异.产生这种现象的原因可能是由于番茄幼苗长时间处于较低光强下,番茄幼苗叶片的光合功能已经适应了低光强环境,以致于高CO2浓度难以改变它的捕光色素分子的内秉特性,如有效光能吸收截面以及处于激发态和基态色素的比例等.  相似文献   

15.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

16.
We combined atmospheric CO2 measurements, satellite observations, and an atmospheric transport model in an inverse modeling framework to infer a key property of vegetation physiology, the light-use efficiency (LUE) of net primary production, for large geographic regions. We find the highest LUE in boreal regions and in the northern hemisphere tropics. Within boreal zones, Eurasian LUE is higher than North American LUE and has a distinctly different seasonal profile. This longitudinal asymmetry is consistent with ecological differences expected from the much greater cover of deciduous vegetation in boreal Eurasia caused by the vast Siberian forests of the deciduous conifer, Larch. Inferred LUE of the northern hemisphere tropics is also high and displays a seasonal profile consistent with variations of both cloud cover and C4 vegetation activity.  相似文献   

17.
光能利用效率(LUE)是评价植物叶片光能利用能力的重要参数,更是影响生态系统生产力大小和质量的主要因素.本文基于植物光合作用对光响应的机理模型推导出植物叶片的光能利用效率模型以及叶片的最大光能利用效率(LUEmax)和对应的饱和光强(IL-sat)的数学表达式,并用光能利用效率模型研究了番茄幼苗叶片在CO2浓度分别为350、450、550和650 μmol·mol-1下的光能利用效率.拟合结果表明: 所推导的叶片光能利用效率模型可以很好地描述4种CO2浓度条件下番茄幼苗叶片的光能利用效率;在这4种CO2浓度条件下,番茄的LUEmax在光合有效辐射(I)为70~90 μmol·m-2·s-1时就可以达到;番茄在CO2浓度为550和650 μmol·mol-1时叶片的LUEmaxIL-sat没有差异.产生这种现象的原因可能是由于番茄幼苗长时间处于较低光强下,番茄幼苗叶片的光合功能已经适应了低光强环境,以致于高CO2浓度难以改变它的捕光色素分子的内秉特性,如有效光能吸收截面以及处于激发态和基态色素的比例等.  相似文献   

18.
H. Liu  Y. Fu  M. Wang  H. Liu 《Photosynthetica》2017,55(1):144-152
Adding green component to growth light had a profound effect on biomass accumulation in lettuce. However, conflicting views on photosynthetic efficiency of green light, which have been reported, might occur due to nonuniform light sources used in previous studies. In an attempt to reveal plausible mechanisms underlying the differential photosynthetic and developmental responses to green light, we established a new way of light treatment modeled according to the principle of gene “knock out”. Lettuce (Lactuca sativa L. var. youmaicai) was grown under two different light spectra, including a wide spectrum of light-emitting diode (LED) light (CK) and a wide spectrum LED light lacking green (480–560 nm) (LG). Total PPFD was approximately 100 µmol(photon) m?2 s?1 for each light source. As compared to lettuce grown under CK, shoot dry mass, photosynthetic pigment contents, total chlorophyll to carotenoids ratio, absorptance of PPFD, and CO2 assimilation showed a remarkable decrease under LG, although specific leaf area did not show significant difference. Furthermore, plants grown under LG showed significantly lower stomatal conductance, intercellular CO2 concentration, and transpiration compared with CK. The plants under CK exhibited significantly higher intrinsic quantum efficiency, respiration rate, saturation irradiance, and obviously lower compensation irradiance. Finally, we showed that the maximum ribulose-1,5-bisphosphate-saturated rate of carboxylation, the maximum rate of electron transport, and rate of triosephosphate utilization were significantly reduced by LG. These results highlighted the influence of green light on photosynthetic responses under the conditions used in this study. Adding green component (480–560 nm) to growth light affected biomass accumulation of lettuce in controllable environments, such as plant factory and Bioregenerative Life Support System.  相似文献   

19.
This article reports the effect of growing conditions on the anatomical and ultrastructural changes associated with the development of photoautotrophy in Gardenia jasminoides Ellis plantlets during shoot multiplication in vitro. Two photosynthetic photon flux densities (PPFD) (50 and 100 μmol m-2 s-1 PPFD: L50 and L100, respectively) and two sucrose concentrations in the culture medium (5 and 30 g L-1: S5 and S30, respectively) were assayed. An increase in PPFD stimulated the development of photosynthetic tissues and led to higher photosynthesis and dark respiration regardless of the sucrose level assayed. However, the effect of sucrose in the medium depended on the PPFD. For the high-PPFD treatment, a low sucrose concentration in the medium stimulated the development of photosynthetic tissues, whereas the opposite effect of sucrose was observed at low PPFD. This study demonstrated that an increase in light intensity to moderate values such as L100 has a beneficial effect on the development of structural changes associated with photoautotrophy. Such an effect is stimulated by low sucrose (S5) levels in the medium. These modifications of usual growing conditions (such as L50 combined with S30) for micropropagation may prove to be useful in mass propagation of gardenia. However, the use of a low sucrose level in addition to conventional growing PPFD may be counterproductive.  相似文献   

20.
Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 mol CO2 m–2 s–1 as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m–2 s–1. Stomatal density varied from 144 mm–2 in plants grown in high PPFD to 84 mm–2 in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g–1 on a unit fresh weight basis, and 4.3 vs 3.7 mg dm–2 on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.Abbreviations the initial slope of the photosynthesis vs PPFD curve - Pn max the light-saturated photosynthetic rate - PPFD photosynthetic photon flux density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号