首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Besides botulinum C2 toxin, Clostridium botulinum type C produces another ADP-ribosyltransferase, which we termed 'C3'. ADP-ribosyltransferase C3 has a molecular mass of 25 kDa and modifies 21-24 kDa protein(s) in platelet and brain membranes. C3 was about 1000 times more potent than botulinum C1 toxin in ADP-ribosylation of membrane proteins. C3-catalysed ADP-ribosylation of the 21-24 kDa protein(s) was decreased by stable guanosine triphosphates, with the potency order GTP[S] much greater than p[NH]ppG greater than p[CH2]ppG. GTP[S] inhibited the ADP-ribosylation caused by C3 by maximally 70-80%, with half-maximal and maximal effects occurring at 0.3 and 10 microM-GTP[S] respectively. The concomitant addition of GTP decreased the inhibitory effect of GTP[S]. GTP[S]-induced inhibition of ADP-ribosylation was resistant to washing of pretreated platelet membranes. The data suggest that the novel botulinum ADP-ribosyltransferase C3 modifies eukaryotic 21-24 kDa guanine nucleotide-binding protein(s).  相似文献   

2.
The 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 was purified from porcine brain cytosol by acetone precipitation, CM-Sephadex, octyl-Sepharose and TSK phenyl-5PW HPLC chromatography to apparent homogeneity. ADP-ribosylation of the protein was increased by guanine nucleotides (GTP, GDP, GTP gamma S, each 100 microM) but not by GMP, ATP or ATP gamma S. The purified 22 kDa protein bound maximally 0.9 mol [35S]GTP gamma S and hydrolyzed GTP with the rate 0.007 mol per mol protein. Amino acid sequences were obtained from two tryptic peptides, selected from an in situ digestion of Immobilon electrotransferred, gel purified ADP-ribosylated substrate. The two sequences obtained, cover 23 residues from the corresponding sequences in human rho.  相似文献   

3.
A ribosyltransferase from C. botulinum type D ADP-ribosylated a protein of 22 kDa (p22) in human astrocytoma (1321N1) cells. ADP-ribosylation of membrane-bound p22 was potentiated by 2 mM MgCl2 or guanine nucleotides but was much reduced in the presence of 10 mM Mg2+ plus GTP gamma S. p22 was immunoprecipitated by a monoclonal antibody (142-24E05) raised against a peptide sequence common to the ras gene family but not by other ras or G-protein antibodies. p22 was also ADP-ribosylated in Drosophila but was not detected in Dictyostelium. These data suggest that the 22 kDa botulinum toxin substrate is a GTP-binding protein and a member of the ras protein family.  相似文献   

4.
Two C3 ADP-ribosyltransferase substrates with different characteristics were isolated from bovine brain cytosol. Amino acid sequences of tryptic peptides from the two substrates were identical to rhoA and rhoB; hence, the purified proteins are referred to as rhoA* and rhoB*, respectively. Soluble rhoA* exhibits properties different from those previously reported for rho proteins. In contrast to other C3 substrates, rhoA* behaved as a 77-80-kDa protein on gel filtration, although on sodium dodecyl sulfate-polyacrylamide gel electrophoresis the ADP-ribosylated moiety had a mobility consistent with a 21.5-kDa protein. Furthermore, C3-catalyzed ADP-ribosylation of rhoA* was dependent on guanine nucleotides in the presence of 1 mM Mg2+ or 1 mM EDTA (0.19 microM free Mg2+). Half-maximal stimulation by GTP, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), guanylyl-imidodiphosphate (Gpp(NH)p), and GDP was observed at 16, 20, 220, and 380 nM, respectively; guanosine 5'-O-(2-thiodiphosphate), GMP, and adenine nucleotides were ineffective. In the presence of GTP gamma S, the rate and extent of ADP-ribosylation was enhanced by dimyristoylphosphatidylcholine and/or cholate. This increase in ADP-ribosylation was specific for rhoA*; it was not observed with rhoB* and has not been reported for other C3 substrates. These distinct properties suggest that rhoA* is a newly recognized type of C3 substrate, differing from the rhoA-like proteins previously reported. rhoB*, on the other hand, has properties similar to those reported for membrane-associated rhoB and its ADP-ribosylation was independent of guanine nucleotides in the presence of 1 mM Mg2+ and not affected by dimyristoylphosphatidylcholine and/or cholate.  相似文献   

5.
Botulinum C3 ADP-ribosyltransferase modifies a approximately 24 kDa membrane protein believed to bind guanine nucleotides. Cholera toxin ADP-ribosylation factors are approximately 19 kDa GTP-binding proteins that directly activate the toxin. To evaluate a possible relationship between C3 ADP-ribosyltransferase substrate and ADP-ribosylation factor, they were partially purified from bovine brain. ADP-ribosylation factor, but not C3 ADP-ribosyltransferase substrate, stimulated auto-ADP-ribosylation of the choleragen A1 subunit whereas C3 ADP-ribosyltransferase substrate, but not ADP-ribosylation factor, was ADP-ribosylated by C3 ADP-ribosyltransferase. Thus, although both may be GTP-binding proteins, no functional similarity between ADP-ribosylation factor and C3 ADP-ribosyltransferase substrate was found.  相似文献   

6.
ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1   总被引:10,自引:0,他引:10  
We have separated at least six GTP-binding proteins (G proteins) with Mr values between 20,000 and 25,000 from bovine brain crude membranes (Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ideda, K., Tanimoto, T., and Takai, Y. (1988) J. Biol. Chem. 263, 2897-2904). Three of these G proteins were copurified with the proteins ADP-ribosylated by botulinum toxin type C1. One G protein ADP-ribosylated by this toxin was identified to be the bovine brain rho protein (rho p20) which was purified to near homogeneity (Yamamoto, K., Kondo, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988) J. Biol. Chem. 263, 9926-9932). rho p20 was ADP-ribosylated by botulinum toxin type C1 in time- and dose-dependent manners. About 0.4 mol of ADP-ribose was maximally incorporated into 1 mol of rho p20. The ADP-ribosylation of rho p20 was dependent on the presence of Mg2+. GTP enhanced the ADP-ribosylation in the presence of a low concentration (50 nM) of Mg2+ but not in the presence of a high concentration (0.5 mM) of Mg2+. The high concentration of Mg2+ fully stimulated the ADP-ribosylation even in the absence of GTP. The ADP-ribosylation of rho p20 did not affect its GTP gamma S-binding and GTPase activities. These results indicate that there are at least three G proteins ADP-ribosylated by botulinum toxin type C1 in bovine brain crude membranes and that one of them is rho p20. Two other G proteins have not yet been identified, but neither the c-ras protein, ADP-ribosylation factor for Gs, nor a G protein with a Mr of 24,000 was ADP-ribosylated by this toxin.  相似文献   

7.
Botulinum neurotoxin type D and exoenzyme C3 have been separately purified from Clostridium botulinum strain D-1873 to apparent homogeneity. Both ADP-ribosylated a rat liver cytosolic protein of 24 kDa. The N-terminal amino acid sequence of C3 was determined and showed a low degree of homology with those of the light and heavy chains of neurotoxins of various types which have been reported previously. However, a polyclonal antibody raised against C3 cross-reacted with the light chains, but not with the heavy chains, of type C1 and D neurotoxins. Furthermore, a monoclonal antibody recognizing the light chains of type C1 and D neurotoxins interacted with C3. These results suggest that the light chain of type C1 or D neurotoxin and exoenzyme C3 share at least one epitope in common with each other.  相似文献   

8.
N Morinaga  M Noda  I Kato 《FEBS letters》1990,271(1-2):211-214
Incubation of membranes of human promyelocytic leukemia HL-60 cells with [32P]NAD led to ADP-ribosylation of several proteins including a 38 kDa protein by endogenous ADP-ribosyltransferases. The ADP-ribosylation of the 38 kDa protein was distinctly different from others on the basis of pH dependency and heat stability at 50 degrees C, suggesting that there are at least two endogenous ADP-ribosyltransferases. It was enhanced by CTP, but not affected by ATP, GTP and UTP, whereas it was inhibited by GTP gamma S. [alpha-32P]CTP bound to the 38 kDa protein immobilized on a nitrocellulose sheet, indicating that the 38 kDa protein which bound CTP is strongly ADP-ribosylated by an endogenous ADP-ribosyltransferase.  相似文献   

9.
Clostridium botulinum D (strain South Africa) produces ADP-ribosyltransferase which modifies eukaryotic 24-26-kDa proteins. ADP-ribosyltransferase activity was associated with a neurotoxin of 150 kDa (Dsa toxin) as confirmed by the elution profile of Dsa toxin from high performance anion-exchange column. The 24-kDa substrate of Dsa toxin-catalyzed ADP-ribosylation was detected in several tissues examined including rat brain, heart, and liver; bovine adrenal medulla; sea urchin eggs; electric organs of electric fish; and cell lines of neural (N18, N1E115, NS20Y, NG108, PC12, and C6) and non-neural (3T3) origins, suggesting its ubiquitous localization in eukaryotic cells. On the other hand, the 26-kDa substrate was detected only in membrane fractions of neural tissues and neuronal cells, suggesting its specific localization in membrane of nerve terminals. ADP-ribosylation of both the 24-kDa substrate in PC12 membrane and the 24-26-kDa substrates in rat brain membrane was potentiated by either divalent cations or guanine nucleotides, whereas adenine nucleotides did not affect the ADP-ribosylation reaction. Trypsin digestion of the 24-kDa substrate in PC12 membrane and the 24-26-kDa substrates in rat brain membrane extract produced different tryptic fragments indicative of the structural difference between the 24- and 26-kDa substrates. Both the 24- and 26-kDa substrates were less sensitive to trypsin digestion before being ADP-ribosylated by Dsa toxin than after, suggesting the conformational alterations of the 24-26-kDa proteins induced by ADP-ribosylation. These results suggest that Dsa toxin modifies two distinct low molecular mass GTP-binding proteins by ADP-ribosylation to alter their putative function(s).  相似文献   

10.
The effects of Clostridium botulinum C3 ADP-ribosyltransferase and of Clostridium botulinum C2 toxin were studied on the cytoskeleton of rat hepatoma FAO and human glioma U333 cells. After treatment of these cells for 24 to 48 h with C3 (3-30 micrograms/ml), the actin microfilaments disappeared, and the intermediate filament network was found to collapse, while microtubules remained intact. Similar alterations of the cytoskeletal filaments without affecting microtubules were induced by the actin-ADP-ribosylating C2 toxin. In FAO cells, C3 caused the rounding up of cells. Concomitantly, cytosolic 22 to 24 kDa proteins were ADP-ribosylated in a guanine nucleotide-dependent manner. Rounding up of cells and ADP-ribosylation of proteins in intact cells were observed at similar concentration of the transferase. These data suggest a role of the protein substrates of C3 in the regulation of the cytoskeletal integrity.  相似文献   

11.
We recently reported that type D botulinum neurotoxin ADP-ribosylates a specific protein of Mr 21,000 in membrane fractions of various tissues (Ohashi, Y. and Narumiya, S. (1987) J. Biol. Chem. in press). We examined similar enzyme activities in other types (types A, B, C1 and E) of botulinum neurotoxins. Of these, only type C1 toxin showed the activity similar to type D toxin and ADP-ribosylated the same Mr 21,000 protein in membranes of mouse brain. No enzyme activities were detected in type A, B and E toxins under the present experimental conditions. GTP stimulated ADP-ribosylation by the two toxins in a concentration dependent manner from 10 nM to 100 microM. The maximum stimulation was about 6 fold. GDP was 10 times less potent than GTP and achieved similar maximum at 1 mM, while GMP, ADP and ATP had little effect. Several guanidino-containing compounds dose-dependently inhibited the activities of both toxins. The IC50 values were 8.5, 14.5 and 45 mM for agmatine, L-arginine methyl ester and guanidine, respectively.  相似文献   

12.
The substrate for ADP-ribosyltransferase from Clostridium botulinum was purified from the cytosol of bovine adrenal gland. Purification procedures consisted of ammonium sulfate fractionation, chromatographies on columns of DEAE-Sepharose and phenyl-Sepharose, gel filtration on a TSK-gel G3000SW column, and Mono Q fast protein liquid chromatography. On DEAE-Sepharose chromatography, the substrate activity was eluted in two separate peaks, and electrophoretic analyses revealed that the substrates in the two peaks are of similar molecular weight but different isoelectric points. The major peak of the substrate was further purified. It was purified about 1,800-fold with a recovery of 2.2% by the above procedures. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the final preparation showed a single protein band at Mr 22,000. The purified protein served as a substrate for botulinum ADP-ribosyltransferase and was maximally ADP-ribosylated to the extent of about 0.7 mol of ADP-ribose/mol of protein. A guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding activity was co-purified with the ADP-ribosylation substrate, and the purified protein maximally bound about 0.5 mol of GTP gamma S/mol. GTP gamma S binding was effectively competed by GTP and GDP but not by GMP, ATP, and ADP. Thus, the ADP-ribosylation substrate is a GTP-binding protein. This protein, designated Gb (b for botulinum), is widely distributed in various tissues. It was rich in brain, pituitary, and adrenal glands, and poor in heart, smooth, and skeletal muscles.  相似文献   

13.
Interaction of small G proteins with photoexcited rhodopsin   总被引:1,自引:0,他引:1  
Bovine rod outer segment (ROS) membranes contain in addition to the heterotrimeric G protein transducin, several small GTP-binding proteins (23-27 kDa). Furthermore, these membranes contain two substrate proteins (about 22 and 24 kDa) for botulinum C3 ADP-ribosyltransferase known to ADP-ribosylate small G proteins in any mammalian cell type studied so far. Most interestingly, [32P]ADP-ribosylation of ROS membrane small G proteins by C3 is regulated by light and guanine nucleotides in a manner similar to pertussis toxin-catalyzed [32P]ADP-ribosylation of the alpha-subunit of transducin. These findings suggest that not only the heterotrimeric G protein transducin but also the C3 substrate small G proteins present in ROS membranes interact with photoexcited rhodopsin and thus contribute to its signalling action.  相似文献   

14.
1. Botulinum C1 toxin and C3 exoenzyme were purified from the culture filtrate of type C Clostridium botulinum strain 003-9, and specific antibodies were raised against each protein. Immunochemical analysis using these antibodies revealed the presence of minute amount of a C3-like molecule in C1 toxin preparation which tightly binds to the toxin component(s). This enzyme complex was separated from the major neurotoxin. Thus, the ADP-ribosyltransferases in C1 and D toxins and C3 exoenzyme appear to come from the same origin, and should be called together botulinum C3 enzyme. 2. Botulinum C3 enzyme ADP-ribosylates the rho and rac gene products, a family of small molecular weight GTP-binding proteins homologous to ras p21s. This ADP-ribosylation occurs at Asn41 of the rho products which is located in their putative effector domain, suggesting that it interferes interaction of these GTP binding proteins with their effector molecules. 3. When incubated with PC-12 cells, the enzyme inhibits cell growth and induces neurites and acetylcholine esterase. Several lines of evidence suggest that the ADP-ribosylation of the rho/rac proteins is responsible for these changes.  相似文献   

15.
Pretreatment of rho protein purified from pig brain cytosol with EDTA (3 mM) for 10 min at 30 degrees C inhibited its ADP-ribosylation by Clostridium botulinum C3 ADP-ribosyltransferase by more than 90%. The EDTA effect was not caused by alteration of C3. GDP or GDP beta S present during the pretreatment period completely prevented the decrease in ADP-ribosylation with half-maximal and maximal effects at 3 and 300 microM, respectively. GTP or GTP gamma S were less efficacious in preventing the decrease in ADP-ribosylation, but were more potent (half-maximal and maximal effects at 0.1 and 3 microM, respectively). [32P]ADP-ribose incorporated in pig brain rho by C3 was de-ADP-ribosylated by the enzyme in the presence of nicotinamide and at low pH. Concomitantly, [32P]NAD was formed. The pH optima for ADP-ribosylation and de-ADP-ribosylation were pH 7.5 and 5.5, respectively. De-ADP-ribosylation was most efficient with nicotinamide, less effective with 3-acetylpyridine and not observed with 3-aminopyridine, 4-aminopyridine, 4-acetylpyridine and isonicotinic acid. As observed for the ADP-ribosylation, the de-ADP-ribosylation by C3 was maximal with the GDP-bound form of rho and blocked after EDTA treatment.  相似文献   

16.
The culture medium of certain strains of Clostridium botulinum type C contains two separable ADP-ribosyltransferases. Besides the ADP-ribosylation of actin due to botulinum C2 I toxin, a second microbial enzyme causes the mono-ADP-ribosylation of a eukaryotic protein with a molecular mass of about 20 kDa found in platelets, neuroblastoma X glioma hybrid cells, S49 lymphoma cells, chick embryo fibroblasts and sperm. The eukaryotic substrate is inactivated by heating and trypsin treatment. In contrast, the novel ADP-ribosyltransferase, which can be separated by DEAE-Sephadex chromatography, is largely resistant in the short term to trypsin digestion.  相似文献   

17.
Botulinum C1 neurotoxin and C3 exoenzyme were purified to apparent homogeneity from the culture filtrate of Clostridium botulinum type C strain 003-9. Both preparations catalyzed ADP-ribosylation of the same substrate, the Mr 22,000 rho gene product (Gb). When the light and heavy chains of C1 toxin were separated, ADP-ribosyltransferase activity in the toxin was quantitatively recovered in the light chain fraction. Anti-C1 toxin antiserum precipitated the ADP-ribosyltransferase activity and the neurotoxicity of C1 toxin in parallel, whereas it had no effect on C3 exoenzyme. On the other hand, anti-C3 exoenzyme antiserum precipitated the ADP-ribosyltransferase activities of both C3 exoenzyme and C1 toxin. This antibody, however, did not precipitate the neurotoxicity of C1 toxin. The ADP-ribosyltransferase in C1 toxin was quantitatively adsorbed onto the anti-C3 antibody column and separated from the majority of C1 toxin protein. The enzyme was then eluted with acidic urea and Western blotting analysis of this eluate revealed the appearance of a protein band positively stained with anti-C3 antibody at a position similar to that of C3 exoenzyme. Quantitative determination by enzyme-linked immunosorbent assay showed that the C3-like immunoreactivity is present in the C1 toxin molecules at the molecular ratio of 1 to 1,000. These results suggest that the ADP-ribosyltransferase activity in C1 toxin is expressed by a C3-like molecule which is present in a small amount in the toxin preparation and appears to bind to the toxin component(s). The above results also indicate that the ADP-ribosyltransferase in C1 toxin is not related to its neurotoxin action.  相似文献   

18.
ADP-ribosyltransferase from Clostridium botulinum type C strain was found to induce an increase of inositol phosphates (IPs) formation in murine thymocytes membranes. Incubation of electropermeabilized murine thymocytes with the enzyme also caused an increase of IPs formation in the cells. This increase of IPs formation in the enzyme-treated membranes and electropermeabilized cells was dependent on the amount of both NAD and the enzyme, suggesting that the stimulation of phosphoinositide-specific phospholipase C (PLC) was related to ADP-ribosylation of membrane proteins by the enzyme. On the other hand, in calf and murine thymocytes two proteins with the same molecular weight of 21,000 were found to be ADP-ribosylated by the botulinum ADP-ribosyltransferase. A minor ADP-ribosylation substrate was shown by two-dimensional polyacrylamide gel electrophoresis to be G21k, a low-molecular-weight GTP-binding protein (G protein) suggested previously by us to be involved in PLC regulation [Wang, P. et al. (1987) J. Biochem. 102, 1275-1287; (1988) 103, 137-142; and (1989) 105, 461-466], and the other major ADP-ribosylation substrate was identified as a rho A protein. Under the experimental conditions of the IPs formation study, ADP-ribosylation of both G21k and rho A proteins by botulinum ADP-ribosyltransferase in membranes and permeabilized cells was observed. These results suggest that botulinum ADP-ribosyltransferase-induced PLC stimulation in thymocytes is closely correlated with ADP-ribosylation of the low-molecular-weight G proteins.  相似文献   

19.
Degranulation of neutrophils involves the differential regulation of the exocytosis of at least two populations of granules. Low molecular weight GTP-binding proteins (LMW-GBPs) have been implicated in the regulation of vesicular traffic in the secretory pathways of several types of cells. In the present study we identify distinct subsets of LMW-GBPs associated with the membranes of neutrophil-specific and azurophilic granules. Ninety-four percent of total [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding activity was equally distributed between the plasma membrane and cytosol with the remaining 6% localized in the granules. In contrast, the cytosol contained only 10% of the total GTPase activity while the specific granules accounted for 13%. [alpha-32P]GTP binding to proteins transferred to nitrocellulose revealed LMW-GBPs in all fractions except the azurophilic granules. The specific granules contained three out of four bands which were found in the plasma membrane; these ranged from 20 to 23 kDa and all were resistant to alkaline extraction. Photoaffinity labeling with [alpha-32P]8-azido-GTP in the presence of micromolar Al3+ identified proteins of 25 and 26 kDa unique to azurophilic granules; these could not be labeled with [alpha-32P]8-azido-ATP and could be extracted by acidic but not alkaline pH. Botulinum C3-mediated [32P]ADP-ribosylation identified proteins of 16, 20, and 24 kDa both in plasma membranes and those of specific granules. An anti-ras monoclonal antibody, 142-24E5, recognized a 20-kDa protein localized to the plasma and specific granule membranes which could not be extracted by alkaline pH, was not a substrate for botulinum C3 ADP-ribosyltransferase, and was translocated from specific granules to plasma membrane after exposure of neutrophils to phorbol myristate acetate. We conclude that neutrophil-specific and azurophilic granules contain distinct subsets of LMW-GBPs which are uniquely situated to regulate the differential exocytosis of these two compartments.  相似文献   

20.
Recently we demonstrated the presence in calf thymocytes of a GTP-binding protein (G-protein) composed of three polypeptides, 54, 41, and 27 kDa, which was physically and functionally associated with a soluble phosphoinositides-specific phospholipase C (PI-phospholipase C). The properties of this G protein were further investigated with the following results. 1) In addition to the ability to bind [35S]guanosine-5'-[gamma-thio]triphosphate (GTP gamma S), the G-protein exhibited GTPase activity, which was enhanced by Mg2+, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, but inhibited by sodium cholate, GTP gamma S and F-.2) The 54-kDa polypeptide was ADP-ribosylated by pertussis toxin and also by endogenous membrane-bound ADP-ribosyltransferase, but none of these three polypeptides was ADP-ribosylated by cholera toxin. 3) The G-protein did not cross-react with either anti-rat brain alpha 1 (alpha-subunit of inhibitory G-protein, G1), alpha 0 (alpha-subunit of other G1-like G-protein, G0) or beta gamma antibodies. 4) Incubation of this G Protein with GTP gamma S caused dissociation of the three polypeptides. 5) The 27 kDa polypeptide showed GTP-binding activity and enhanced the phosphatidylinositol 4,5-bisphosphate hydrolysis by purified PI-phospholipase C. These results suggest that the PI-phospholipase C-associated G-protein in calf thymocytes may be a novel one and that it is involved in the regulation of PI-phospholipase C activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号