首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo.  相似文献   

2.
Anti-12(S)-hydroxyeicosatetraenoic acid (12-HETE)-antibody and anti-thromboxane B2 (TXB2)-antibody were generated and applied to the radioimmunoassay. The detection limit for 12-HETE was 16 pg. The cross-reactivities of anti-12-HETE-antibody were 4.6% for 15-HETE, 0.18% for 5-HETE and below 0.15% for leukotrienes and prostaglandins (PGs). 12-HETE and TXB2 released from guinea pig platelets were measured by radioimmunoassay. Platelet activating factor (PAF) at 10(-9) M induced the aggregation of platelets, the releases of immunoreactive-12-HETE (1.8 +/- 1.2 ng/10(8) platelets, mean +/- S.D.) and immunoreactive-TXB2 (18.5 +/- 17.3 ng/10(8) platelets). Collagen at 1 microgram/ml also evoked platelet aggregation, the releases of immunoreactive-12-HETE (2.7 +/- 1.1 ng/10(8) platelets) and immunoreactive-TXB2 (11.8 +/- 4.6 ng/10(8) platelets). By the stimulation with these compounds, TXB2 was produced in a greater amount than 12-HETE from guinea pig platelets. Although 10(-7) M and 10(-6) M U46619, a TXA2 mimetic, caused platelet aggregation, arachidonic acid metabolites were not released. These data suggest the presence of different mechanisms of platelet activation depending on each stimulus.  相似文献   

3.
Two perfluorinated carboxylic acids (PFCAs), pentadecafluorooctanoic acid (PDFOA) and heptadecafluorononanoic acid (HDFNA), were investigated for potential modulatory effects on the cyclooxygenase (COX) and 12-lipoxygenase (LOX) metabolisms in rat platelets. Both PDFOA and HDFNA dose-dependently inhibited the formation of a COX metabolite, 12-HHT, without any effect on that of a LOX metabolite, 12-HETE, at concentrations ranging from 10 to 100 μM. These two PFCAs up to 100 μM did not affect platelet membrane integrity, and COX-1 and -2 protein expression levels in Caco-2 cells. These results suggest that PDFOA and HDFNA have the potential to modify platelet function by inhibiting the COX pathway at activity level, but not at protein level.  相似文献   

4.
Dietary fats, which increase the risk of prostate cancer, stimulate release of intestinal neurotensin (NT), a growth-promoting peptide that enhances the formation of arachidonic acid metabolites in animal blood. This led us to use PC3 cells to examine the involvement of lipoxygenase (LOX) and cyclooxygenase (COX) in the growth effects of NT, including activation of EGF receptor (EGFR) and downstream kinases (ERK, AKT), and stimulation of DNA synthesis. NT and EGF enhanced [3H]-AA release, which was diminished by inhibitors of PLA2 (quinacrine), EGFR (AG1478) and MEK (U0126). NT and EGF phosphorylated EGFR, ERK and AKT, and stimulated DNA synthesis. These effects were diminished by PLA2 inhibitor (quinacrine), general LOX inhibitors (NDGA, ETYA), 5-LOX inhibitors (Rev 5901, AA861), 12-LOX inhibitor (baicalein) and FLAP inhibitor (MK886), while COX inhibitor (indomethacin) was without effect. Cells treated with NT and EGF showed an increase in 5-HETE levels by HPLC. PKC inhibitor (bisindolylmaleimide) blocked the stimulatory effects of NT, EGF and 5-HETE on DNA synthesis. We propose that 5-LOX activity is required for NT to stimulate growth via EGFR and its downstream kinases. The mechanism may involve an effect of 5-HETE on PKC, which is known to facilitate MEK-ERK activation. NT may enhance 5-HETE formation by Ca2+-mediated and ERK-mediated activation of DAG lipase and cPLA2. NT also upregulates cPLA2 and 5-LOX protein expression. Thus, the growth effects of NT and EGF involve a feed-forward system that requires cooperative interactions of the 5-LOX, ERK and AKT pathways.  相似文献   

5.
Epidemiologic and animal studies have linked pancreatic cancer growth with fat intake, especially unsaturated fats. Arachidonic acid release from membrane phospholipids is essential for tumor cell proliferation. Lipoxygenases (LOX) constitute one pathway for arachidonate metabolism, but their role in pancreatic cancer growth is unknown. The expression of 5-LOX and 12-LOX as well as their effects on cell proliferation was investigated in four human pancreatic cancer cell lines (PANC-1, MiaPaca2, Capan2, and ASPC-1). Expression of 5-LOX and 12-LOX mRNA was measured by nested RT-PCR. Effects of LOX inhibitors and specific LOX antisense oligonucleotides on pancreatic cancer cell proliferation were measured by (3)H-thymidine incorporation. Our results showed that (1) 5-LOX and 12-LOX were expressed in all pancreatic cancer cell lines tested, while they were not detectable in normal human pancreatic ductal cells; (2) both LOX inhibitors and LOX antisense markedly inhibited cell proliferation in a concentration-dependent and time-dependent manner; (3) the 5-LOX and 12-LOX metabolites 5-HETE and 12-HETE as well as arachidonic and linoleic acids directly stimulated pancreatic cancer cell proliferation; (4) LOX inhibitor-induced growth inhibition was reversed by 5-HETE and 12-HETE. The current studies indicate that both 5-LOX and 12-LOX expression is upregulated in human pancreatic cancer cells and LOX plays a critical role in pancreatic cancer cell proliferation. LOX inhibitors may be valuable for the treatment of pancreatic cancer.  相似文献   

6.
Dietary arachidonic acid (AA) and eicosanoids influence neoplastic cell (NC) growth, differentiation and apoptosis. Plasma membrane fatty acid and cyclooxygenase (COX) and lipoxygenase (LOX) products were investigated in lung alveolar carcinoma cells from mice fed on different diets. Two groups were fed on a basic diet plus 6% of: corn oil (rich in 18:2n-6; CO) and on olein oil (rich in 18:1n-9; O), respectively. Control group (C) received commercial diet. NC fatty acids were analyzed by GLC, and apoptosis by flow cytometry and microscopy. In NC from CO group AA levels and LOX metabolites were increased, whereas COX metabolites decreased. NC from CO compared to O group diet showed a higher count of apoptosis and increased LOX:COX ratio. High levels of AA and decreased COX eicosanoids has been involved in anti-tumoral mechanisms by increasing tumor cell apoptosis. Present data emphasizes the implications of the dietary fatty acids on the neoplastic process in this tumoral model.  相似文献   

7.
The influence of inhibitors of different lipoxygenases (LOX) on the growth of human tumor cells with different profiles of synthesized eicosanoids was studied. The studied LOX inhibitors had virtually no influence on the growth of A549 cells actively synthesizing cyclooxygenase and lipoxygenase metabolites of arachidonic acid (AA). The inhibitor of 12-LOX, baicalein, significantly inhibited proliferation in cultures of A431 epidermoid carcinoma cells with a characteristic domination of the major lipoxygenase metabolite of AA, 12-hydroxyeicosatetraenoic acid (12-HETE), in the profile of synthesized eicosanoids and reduced to 70% the incorporation of [3H]thymidine into DNA. Treatment of these cultures with 12-HETE virtually restored the growth potential of the tumor cells. The findings suggest that the lipoxygenase metabolite of AA, 12-HETE, is a growth-limiting factor for tumor cells of definite type.  相似文献   

8.
Activation of protein kinase C (PKC) involves its recruitment to the membrane, where it interacts with its activator(s). We expressed PKCalpha fused to green fluorescent protein and examined its real time translocation to the plasma membrane in living human corneal epithelial cells. Upon 10 min of stimulation with epidermal and hepatocyte growth factors (EGF and HGF), PKCalpha translocated to the plasma membrane. Keratinocyte growth factor did not stimulate PKCalpha translocation up to 1 h after stimulation. Pretreatment with the 15-lipoxygenase metabolite, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), followed by EGF or HGF, produced faster translocation of PKCalpha detectable at 2 min. However, the same concentration of 15(S)-HETE alone did not stimulate translocation. 15(S)-Hydroperoxyeicosatetraenoic acid and 5(S)-HETE did not affect growth factor-induced translocation of PKCalpha. PD153035, a specific inhibitor of tyrosine kinase activity of the EGF receptor, completely blocked PKCalpha translocation induced by EGF. PD98059, a specific MEK inhibitor, significantly inhibited EGF- and HGF-mediated PKCalpha translocation, which was reversed by addition of 15(S)-HETE. Phosphorylation of ERK1/2 by EGF was followed by phosphorylation of cytosolic phospholipase A(2) (cPLA(2)), and blocking ERK1/2 inhibited cPLA(2) activation. Immunofluorescence demonstrated translocation of p-cPLA(2) to plasma and nuclear membranes as early as 2 min. This may further increase arachidonic acid release from membrane phospholipid pools and increase the intracellular pool of HETEs. In fact, in cells prelabeled with [(3)H]arachidonic acid, EGF stimulated synthesis of 15(S)-HETE in the cytosolic fraction. 15(S)-HETE also reversed the effect of LOX inhibitor on EGF-mediated cell proliferation. Our results indicate that 15(S)-HETE is an intracellular second messenger that facilitates translocation of PKCalpha to the membrane and elucidate a mechanism that plays a regulatory role in cell proliferation crucial to corneal wound healing.  相似文献   

9.
Arachidonic acid (AA) metabolism in the non-pregnant sheep uterus was studied in vitro using conventional chromatographic and HPLC techniques. High expression of both lipoxygenase (LOX) as well as cyclooxygenase (COX) enzymes and their activities was found in the uterine tissues. On incubation of uterine enymes with AA, the LOX products formed were identified as 5-hydroperoxyeicosatetraenoic acid (5-HPETE), 12- and 15-hydroxyeicosatetraenoic acids (12- and 15-HETEs), based on their separation on TLC and HPLC. By employing differential salt precipitation techniques, the LOXs generating products 5-HPETE (5-LOX), 12-HETE and 15-HETE (12- and 15-dual LOX) were isolated. Based on their analysis on TLC, the COX products formed were identified as prostaglandins - PGF2alpha and prostacyclin derivative 6-keto PGF1alpha. The study forms the first report on the comprehensive analysis on the metabolism of AA in sheep uterus in vitro via the LOX and COX pathways.  相似文献   

10.
Previous experimental studies have shown that high dietary fat intake is associated with mammary carcinogenesis. In the current study, the effect of 5-LOX or 12-LOX inhibitors on human breast cancer cell proliferation and apoptosis, as well as the possible mechanisms were investigated. The LOX inhibitors, NDGA, Rev-5901, and baicalein all inhibited proliferation and induced apoptosis in MCF-7 (ER+) and MDA-MB-231 (ER-) breast cancer cell in vitro. In contrast, the LOX products, 5-HETE and 12-HETE had mitogenic effects, stimulating the proliferation of both cell lines. These inhibitors also induced cytochrome c release, caspase-9 activation, as well as downstream caspase-3, caspase-7 activation, and PARP cleavage. LOX inhibitor treatment also reduced the levels of anti-apoptotic proteins Bcl-2 and Mcl-1 and increased the levels of the pro-apoptotic protein bax. In conclusion, blockade of both 5-LOX and 12-LOX pathways induces apoptosis in breast cancer cells through the cytochrome c release and caspase-9 activation, with changes in the levels of Bcl-2 family proteins.  相似文献   

11.
Aspirin inhibits thromboxane A2 (TxA2) production whereas its salicylate moiety inhibits 12-hydroxy-eiosatetraenoic acid (12-HETE) production in the platelet. The significance of the latter effect on platelet function is unclear. We examined the effects of aspirin and salicylate on (i) platelet/ collagen adhesion using 3H-adenine-labelled human platelets and collagen- coated discs, (ii) platelet aggregation induced by thrombin, collagen, ADP and arachidonic acid, and (iii) platelet TxA2 and 12-HETE synthesis as measured by radioimmunoassay and high pressure liquid chromatography respectively. Aspirin (50 μM) decreased platelet aggregation and increased platelet adhesion. The decrease in aggregation was associated with inhibition of TxA2 production and the increase in adhesion was associated with enhanced 12-HETE production. Salicylate had the opposite effects. Platelet aggregation was increased and platelet adhesion decreased. The increased aggregation was associated with enhanced TxA2 production and the decrease in aggregation was associated with inhibition of 12-HETE production. These observations suggest that 12-HETE facilitates platelet adhesion which can be altered by salicylate treatment.  相似文献   

12.
13.
Dipetalodipin (DPTL) is an 18 kDa protein cloned from salivary glands of the triatomine Dipetalogaster maxima. DPTL belongs to the lipocalin superfamily and has strong sequence similarity to pallidipin, a salivary inhibitor of collagen-induced platelet aggregation. DPTL expressed in Escherichia coli was found to inhibit platelet aggregation by collagen, U-46619, or arachidonic acid without affecting aggregation induced by ADP, convulxin, PMA, and ristocetin. An assay based on incubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) followed by chromatography, mass spectrometry, and isothermal titration calorimetry showed that DPTL binds with high affinity to carbocyclic TXA(2), TXA(2) mimetic (U-46619), TXB(2), PGH(2) mimetic (U-51605), PGD(2,) PGJ(2), and PGF(2α). It also interacts with 15(S)-HETE, being the first lipocalin described to date to bind to a derivative of 15-lipoxygenase. Binding was not observed to other prostaglandins (e.g. PGE(1), PGE(2), 8-iso-PGF(2α), prostacyclin), leukotrienes (e.g. LTB(4), LTC(4), LTD(4), LTE(4)), HETEs (e.g. 5(S)-HETE, 12(S)-HETE, 20-HETE), lipids (e.g. arachidonic acid, PAF), and biogenic amines (e.g. ADP, serotonin, epinephrine, norepinephrine, histamine). Consistent with its binding specificity, DPTL prevents contraction of rat uterus stimulated by PGF(2α) and induces relaxation of aorta previously contracted with U-46619. Moreover, it inhibits angiogenesis mediated by 15(S)-HETE and did not enhance inhibition of collagen-induced platelet aggregation by SQ29548 (TXA(2) antagonist) and indomethacin. A 3-D model for DPTL and pallidipin is presented that indicates the presence of a conserved Arg(39) and Gln(135) in the binding pocket of both lipocalins. Results suggest that DPTL blocks platelet aggregation, vasoconstriction, and angiogenesis through binding to distinct eicosanoids involved in inflammation.  相似文献   

14.
A cytosolic 650-kDa complex which binds 12(S)-hydroxy-5,8,10, 14-eicosatetraenoic acid (12(S)-HETE) with high affinity and specificity has been found in various cell lines but not until now in platelet cytosol. After incubation of human platelets with 12(S)-[3H]HETE, a labeled cytosolic 650-kDa complex was isolated. As previously shown for the binding complex in Lewis lung carcinoma (LLC) cells, ATP treatment transformed the platelet complex into a 50-kDa ligand-binding subunit. These results are of interest for two reasons: (a) 12(S)-HETE is a major arachidonic acid metabolite in platelets, and (b) platelets contain large amounts of the cell adhesion molecule GpIIb/IIIa, the activation of which is regulated by 12(S)-HETE. Hsp90 was found to be a component of the 12(S)-HETE binding complex in Lewis lung carcinoma cells, and the 50-kDa ligand-binding subunit itself bound 12(S)-HETE with high affinity. Competition experiments showed that 12(R)-HETE, 15-deoxy-Delta12, 14-prostaglandin J2, and 5(S)-HETE had lower affinity for the 50-kDa subunit than 12(S)-HETE. The 12(S)-HETE binding protein appears to be distinct from known members of the steroid hormone receptor superfamily of nuclear receptors.  相似文献   

15.
12(S)-hydroxyeicosatetraenoic acid (12[S]-HETE) and 13(S)-hydroxyoctadecadienoic acid (13[S]-HODE), lipoxygenase metabolites of arachidonic acid and linoleic acid, respectively, previously have been suggested to regulate tumor cell adhesion to endothelium during metastasis. Adhesion of rat Walker carcinosarcoma (W256) cells to a rat endothelial cell monolayer was enhanced after treatment with 12(S)-HETE and this 12(S)-HETE enhanced adhesion was blocked by 13(S)-HODE. Protein kinase inhibitors, staurosporine, calphostin C, and 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine, inhibited the 12(S)-HETE enhanced W256 cell adhesion. Depleting W256 cells of protein kinase C (PKC) with phorbol 12-myristate-13-acetate abolished their ability to respond to 12(S)-HETE. Treatment of W256 cells with 12(S)-HETE induced a 100% increase in membrane-associated PKC activity whereas 13(S)-HODE inhibited the effect of 12(S)-HETE on PKC translocation. High-performance liquid chromatographic analysis revealed that in W256 cells 12-HETE and 13-HODE were two of the major lipoxygenase metabilites of arachidonic acid and linoleic acid, respectively. Therefore, these two metabolites may provide an alternative signaling pathway for the regulation of PKC. Further, these findings suggest that the regulation of tumor cell adhesion to endothelium by 12(S)-HETE and 13(S)-HODE may be a PKC-dependent process.  相似文献   

16.
We investigated the effects of certain dietary polyunsaturated fatty acids (PUFAs) and related eicosanoids on the growth and metastasis formation of a murine mammary gland adenocarcinoma. Salvia hispanica (ChO) and Carthamus tinctorius (SaO) vegetable oil sources of omega-3 and -6 PUFAs and a commercial diet as control (CO), were used. We analysed fatty acids of neoplastic cells (NC) membranes by GLC; the eicosanoids 12- HETE and 12-HHT (LOX and COX metabolites) by HPLC and apoptosis and T-lymphocyte infiltration by flow cytometry and microscopy. NC from ChO groups showed lower levels of arachidonic acid and of both eicosanoids compared to SaO and CO (p<0.05). The ChO diet decreased the tumor weight and metastasis number (p<0.05). Apoptosis and T-lymphocyte infiltration were higher and mitosis decreased with respect to the other diets (p<0.05). Present data showed that ChO, an ancient and almost unknown source of omega-3, inhibits growth and metastasis in this tumor model.  相似文献   

17.
The cytochrome P450-dependent monoxygenase pathway represents a major route for the metabolism of arachidonic acid (AA) in the kidney. In turn, AA metabolites have been shown to affect renal electrolyte metabolism, including sodium transport. Specifically AA, 20-HETE and 12-HETE inhibit sodium-dependent (Na+-Pi) uptake into renal culture cells, and both 12-HETE and 14,15 EET have been shown to reduce renin release from renal cortical slices. Since the bulk of Pi transport occurs in the proximal tubule (PT), and the PT is a major site of AA metabolism, we studied the effect of AA and several of its metabolites on Na+-Pi uptake into PT-like opossum kidney (OK) cells. Incubation of OK cells in AA (10(-8) M) resulted in 17% inhibition of Pi uptake. Three metabolites of omega-hydroxylation of AA induced significant decreases in Pi uptake: 19R-HETE (10(-8) M) by 36% (P=0.008), 19S-HETE (10(-8) M) by 24% (P=0.002) and 20-COOH-AA (10(-8) M), a metabolite of 20-HETE, by 25% (P<0.0001). 14,15 EET (10(-8) M), a breakdown product of AA by the epoxygenase pathway, had the greatest effect on Pi uptake in OK cells. It decreased Pi uptake by 47% (P < 0.0001). Addition of the P450 inhibitor, 7-ER (10(-8) M), to OK cells resulted in a significant stimulation (28%) of Pi uptake (P=0.016). These results indicate that these AA metabolites have a significant inhibitory effect on Na+-Pi uptake in OK cells.  相似文献   

18.
Placental hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2) plays an important role in pregnancy maintenance and fetal maturation. In the event of intrauterine infection, lipoxygenase (LOX) metabolites are produced in the placenta and contribute to preterm labor and adverse fetal outcomes. On the other hand, LOX metabolites are involved in production of progesterone, which is required for pregnancy maintenance. In this study, we evaluated the interaction between the LOX pathway, progesterone, and HSD11B2. Specifically, we hypothesized that LOX metabolites would alter HSD11B2 and this effect would be mediated by progesterone. We cultured human term placental trophoblasts in the presence and absence of the LOX inhibitors Nordihydroguaiaretic acid (NDGA), AA861, and Baicalein; the LOX metabolites Leukotriene B(4) and 12(S)-Hydroxyeicosatetraenoate (12-HETE); and progesterone and progesterone receptor antagonist RU486. By radiometric conversion assay, real-time quantitative PCR, Western blot analysis, and ELISA, we examined HSD11B2 enzyme activity, HSD11B2 mRNA and HSD11B2 protein expression, and progesterone output. LOX metabolites down-regulated HSD11B2 activity and HSD11B2 expression. LOX inhibitors up-regulated HSD11B2 activity and HSD11B2 and HSD11B2 expression, and these effects were attenuated by addition of LOX metabolites. Net progesterone output was increased by LOX metabolites and decreased by LOX inhibitors. Progesterone down-regulated HSD11B2 activity and HSD11B2 and HSD11B2 expression, and these effects were blocked by RU486. Furthermore, the suppressive effect of 12-HETE on HSD11B2 activity was also reversed by RU486. We conclude that HSD11B2 in human placental trophoblasts is decreased by progesterone and increased by inhibition of endogenous LOX metabolites, and that a component of the effect of LOX metabolites on HSD11B2 is mediated by their stimulation of endogenous progesterone output.  相似文献   

19.
We have proposed a mechanism that platelet aggregation is regulated by its 12-lipoxygenase product, 12S-hydroxyeicosatetraenoic acid (12-HETE) (Sekiya, F., Takagi, J. and Saito, Y. (1989) Thrombos. Res. 56, 407-415). Inhibition of endogenous 12-HETE production by 15-HETE, a specific inhibitor of 12-lipoxygenase, accelerated aggregation of bovine platelets in response to collagen and arachidonic acid liberation from phospholipids was enhanced. Exogenously added 12-HETE suppressed collagen-induced liberation of arachidonic acid and the aggregation was also inhibited. On the other hand, 12-HETE did not interfere with thromboxane synthesis from free arachidonic acid in a cell-free system. These observations suggest that 12-HETE exerts a negative feedback to prevent excess aggregation through interference with arachidonic acid liberation from membrane phospholipids.  相似文献   

20.
In this study we have investigated the role of extracellular ATP on thrombin induced-platelet aggregation (TIPA) in washed human platelets. ATP inhibited TIPA in a dose-dependent manner and this inhibition was abolished by apyrase but not by adenosine deaminase (ADA) and it was reversed by extracellular magnesium. Antagonists of P2Y1 and P2Y12 receptors had no effect on this inhibition suggesting that a P2X receptor controlled ATP-mediated TIPA inhibition. ATP also blocked inositol phosphates (IP1, IP2, IP3) generation and [Ca2+]i mobilization induced by thrombin. Thrombin reduced cAMP levels which were restored in the presence of ATP. SQ-22536, an adenylate cyclase (AC) inhibitor, partially reduced the inhibition exerted by ATP on TIPA. 12-lipoxygenase (12-LO) inhibitors, nordihidroguaretic acid (NDGA) and 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15(S)-HETE), strongly prevented ATP-mediated TIPA inhibition. Additionally, ATP inhibited the increase of 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)-HETE) induced by thrombin. Pretreatment with both SQ-22536 and NDGA almost completely abolished ATP-mediated TIPA inhibition. Our results describe for the first time that ATP implicates both AC and 12-LO pathways in the inhibition of human platelets aggregation in response to agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号