首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Anesthetized vervets were given intravenous injections of horseradish peroxidase. Subsequent studies of iris capillaries with the electron microscope showed peroxidase reaction product within the lumen of the vessels and in endothelial vesicles, but no peroxidase had penetrated the vascular endothelium. The normal ultrastructure of the vascular wall was retained.  相似文献   

2.
《The Journal of cell biology》1984,98(3):1033-1041
Bovine microvascular endothelial cells (BMECs) proliferated to confluence on the stromal surface of human amniotic membrane that had been denuded of its natural epithelium. The resulting cultures had the following characteristics: (a) The endothelial cells formed a thin, continuous monolayer and, like their in vivo counterparts, contained basal adhesion plaques and large numbers of cytoplasmic vesicles and 10- nm filaments. In addition, the endothelial cells elaborated a basement membrane-like structure. (b) The borders of the BMECs reacted with AgNO3 to produce the "flagstone" pattern typical of endothelium stained with this reagent in vivo. (c) More than 90% of the zones of contact between endothelial cells examined 8 d after plating prevented passage of a macromolecular probe (wheat germ agglutinin conjugated to horseradish peroxidase) across the BMEC monolayer. (d) 8 d-old cultures displayed a transendothelial electrical resistance that averaged 69 +/- 28 omega X cm2. Monolayers of BMECs maintained on amnion thus resemble in vivo endothelium in several respects and should provide a useful and relevant model for the in vitro study of various phenomena that occur at the microvascular wall.  相似文献   

3.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) interacts with two high-affinity tyrosine kinase receptors, VEGFR-1 and VEGFR-2, to increase microvascular permeability and induce angiogenesis. Both receptors are selectively expressed by vascular endothelial cells and are strikingly increased in tumor vessels. We used a specific antibody to localize VEGFR-2 (FLK-1, KDR) in microvascular endothelium of normal mouse kidneys and in the microvessels induced by the TA3/St mammary tumor or by infection with an adenoviral vector engineered to express VPF/VEGF. A pre-embedding method was employed at the light and electron microscopic levels using either nanogold or peroxidase as reporters. Equivalent staining was observed on both the luminal and abluminal surfaces of tumor- and adenovirus-induced vascular endothelium, but plasma membranes at interendothelial junctions were spared except at sites connected to vesiculovacuolar organelles (VVOs). VEGFR-2 was also localized to the membranes and stomatal diaphragms of some VVOs. This staining distribution is consistent with a model in which VPF/VEGF increases microvascular permeability by opening VVOs to allow the transendothelial cell passage of plasma and plasma proteins.  相似文献   

4.
Vascular permeability and endothelial glycocalyx were examined in young adult spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP), and Wistar Kyoto rats (WKY) as a control, in order to determine earlier changes in the blood-brain barrier (BBB) in the hypothalamus in chronic hypertension. These rats were injected with horseradish peroxidase (HRP) as an indicator of vascular permeability. Brain slices were developed with a chromogen and further examined with cationized ferritin, a marker for evaluating glycocalyx. Staining for HRP was seen around vessels in the hypothalamus of SHR and SHRSP, but was scarce in WKY. The reaction product of HRP appeared in the abluminal pits of endothelial cells and within the basal lamina of arterioles, showing increased vascular permeability in the hypothalamus of SHR and SHRSP, whereas there were no leaky vessels in the frontal cortex of SHR and SHRSP, or in both areas of WKY. The number of cationized ferritin particles binding to the capillary endothelial cells was decreased in the hypothalamus of SHR and SHRSP, while the number decreased in the frontal cortex of SHRSP, compared with those in WKY. Cationized ferritin binding was preserved in some leaky arterioles, while it was scarce or disappeared in other leaky vessels. These findings suggest that BBB disruption occurs in the hypothalamus of 3-month-old SHR and SHRSP, and that endothelial glycocalyx is markedly damaged there without a close relationship to the early changes in the BBB.  相似文献   

5.
Our aim was to determine whether the expression of endothelin-converting enzyme in human tissues would correlate with the distribution of its substrate, big endothelin-1, and its product, the mature peptide. Site-directed antisera raised against the conserved C-terminus of the mammalian enzyme were used to measure the immunoreactive enzyme in microsomal fractions prepared from tissue homogenates and to localize staining to the endothelial cells lining large conduit and smaller resistance vessels within cardiac, adrenal, respiratory and brain tissue. The activity of endothelin-converting enzyme was measured and characterized in isolated endothelial cells. This pattern of staining in the vascular endothelium paralleled that of mature endothelin and big endothelin-1, and these peptides were detectable by radioimmunoassay in all tissues examined. Immunoreactive endothelin-converting enzyme localized to other cell types, including bronchial epithelial cells, and to fibres within the glial limitans, neuronal processes and cell bodies of the cerebral cortex. Although perivascular astrocytes in the subcortical white matter displayed intense endothelin-converting enzyme-like immunoreactivity, endothelin staining was not detected. The results suggest that endothelin-converting enzyme has a ubiquitous distribution within the human vascular endothelium and is positioned to catalyse the conversion of big endothelin-1 to the biologically active endothelin-1, which on release may contribute to the maintenance of basal tone in humans. Endothelin-converting enzyme localized to epithelial cells in peripheral tissues or astrocytes within the brain may be upregulated in pathophysiological conditions in which endothelin levels are increased and could represent a further target for therapeutic intervention by enzyme inhibitors. © 1998 Chapman & Hall  相似文献   

6.
Endogenous albumin was revealed over cellular structures of rat ascendent aorta endothelia and mesothelium, with high resolution and specificity, by applying the protein A-gold immunocytochemical approach. This approach allows albumin distribution to be studied under steady-state conditions. The cellular layers evaluated were the aortic endothelium, the capillary endothelium (vasa vasorum), and the mesothelium externally lining the aorta at this level. Gold particles, revealing albumin antigenic sites, were preferentially located over plasmalemmal vesicles and intercellular clefts of endothelial and mesothelial cells, though with different labeling intensities. The interstitial space was also labeled. Morphometrical evaluation of plasmalemmal vesicles demonstrated a higher surface density for these structures in capillary endothelial cells (12%) compared with those in aortic endothelial (5%) and mesothelial cells (2%). Quantitation of gold labeling intensities over these structures revealed a higher labeling over plasmalemmal vesicles of capillary endothelium than over those of aortic endothelium and mesothelium. This result, together with the higher surface density of plasmalemmal vesicles found in capillary endothelium, suggest an important role of these structures in the transendothelial passage of endogenous albumin, particularly for capillary endothelium. On the other hand, labeling densities over mesothelial clefts were found to be higher than those of capillary and aortic endothelia. Results from this study concur with the proposal of a differential passage of albumin according to the cell lining considered, and suggest to a role for mesothelial intercellular clefts in contributing to the presence of albumin in interstitial spaces.  相似文献   

7.
The blood-brain barrier in a reptile, Anolis carolinensis   总被引:1,自引:0,他引:1  
An electron microscopic study was made of the ultrastructure and permeability of the capillaries in the cerebral hemispheres of the lizard, Anolis carolinensis. The brain of Anolis is vascularized by a loop-type pattern consisting exclusively of arteriovenous capillary loops. The ultrastructure of the endothelium and the arrangement of the various layers from the capillary lumen to the central nervous tissue is similar to that of mammals. The endothelial cells form a continuous layer around the lumen and are joined by tight interendothelial junctions. The basal lamina of the endothelium is also continuous and encloses pericyte processes. The cells of the nervous tissue rest directly on the basal lamina of the capillary and are separated from each other by a 200 Å space. Intravenously injected horseradish peroxidase (MW 40,000) and ferritin (MW 500,000) were used to study the permeability of the capillaries. The entry of horseradish peroxidase and ferritin into the intercellular spaces of the brain is restricted by the tightness of the interendothelial junctions. No vesicular transport of either tracer occurs; however, ferritin does enter the endothelial cells in vacuoles. No tracer molecules are present in the basal lamina, pericytes, or nervous tissue. The different responses of the endothelial cell to the tracers used in this study suggest that endocytotic activities of endothelial cells involve different processes. Vacuoles formed by marginal folds, vacuoles formed by endothelial surface projections or deep invaginations of the plasma membrane, 600–800 Å vesicles, and coated vesicles all seem to differ in the nature of the substances which they endocytose.  相似文献   

8.
In cerebral circulation, epileptic seizures associated with excessive release of the excitatory neurotransmitter glutamate cause endothelial injury. Heme oxygenase (HO), which metabolizes heme to a vasodilator, carbon monoxide (CO), and antioxidants, biliverdin/bilirubin, is highly expressed in cerebral microvessels as a constitutive isoform, HO-2, whereas the inducible form, HO-1, is not detectable. Using cerebral vascular endothelial cells from newborn pigs and HO-2-knockout mice, we addressed the hypotheses that 1) glutamate induces oxidative stress-related endothelial death by apoptosis, and 2) HO-1 and HO-2 are protective against glutamate cytotoxicity. In cerebral endothelial cells, glutamate (0.1–2.0 mM) increased formation of reactive oxygen species, including superoxide radicals, and induced major keystone events of apoptosis, such as NF-B nuclear translocation, caspase-3 activation, DNA fragmentation, and cell detachment. Glutamate-induced apoptosis was greatly exacerbated in HO-2 gene-deleted murine cerebrovascular endothelial cells and in porcine cells with pharmacologically inhibited HO-2 activity. Glutamate toxicity was prevented by superoxide dismutase, suggesting apoptotic changes are oxidative stress related. When HO-1 was pharmacologically upregulated by cobalt protoporphyrin, apoptotic effects of glutamate in cerebral endothelial cells were completely prevented. Glutamate-induced reactive oxygen species production and apoptosis were blocked by a CO-releasing compound, CORM-A1 (50 µM), and by bilirubin (1 µM), consistent with the antioxidant and cytoprotective roles of the end products of HO activity. We conclude that both HO-1 and HO-2 have anti-apoptotic effects against oxidative stress-related glutamate toxicity in cerebral vascular endothelium. Although HO-1, when induced, provides powerful protection, HO-2 is an essential endogenous anti-apoptotic factor against glutamate toxicity in the cerebral vascular endothelium. endothelium; carbon monoxide; bilirubin; injury; reactive oxygen species; heme oxygenase  相似文献   

9.
Rheumatoid synovial fibroblasts were used as an immunogen to produce monoclonal antibodies selected for their reactivity with stromal cell antigens. Mice were immunised with low passage whole cell preparations and the subsequent hybridomas were screened by immunohistochemistry on rheumatoid synovium and tonsil sections. The aim was to identify those antibodies that recognised antigens that were restricted to stromal cells and were not expressed on CD45 positive leucocytes. A significant number of antibodies detected antigen that identified endothelial cells. These antibodies were further characterised to determine whether the vessels identified by these antibodies were vascular or lymphatic. From five fusions clones were identified with predominant reactivity with: 1) fibroblasts and endothelial cells; or 2) broad stromal elements (fibroblast, endothelium, epithelium, follicular dendritic cells). A fibroblast-specific antibody that did not also identify vessels was not generated. Examples of each reactivity pattern are discussed.  相似文献   

10.
The transendothelial passage of horseradish peroxidase, injected intravenously into mice, was studied at the ultrastructural level in capillaries of cardiac and skeletal muscle. Peroxidase appeared to permeate endothelial intercellular clefts and cell junctions. Abnormal peroxidase-induced vascular leakage was excluded. Neutral lanthanum tracer gave similar results. The endothelial cell junctions were considered to be maculae occludentes, with gaps of about 40 A in width between the maculae, rather than zonulae occludentes. Some observations in favor of concurrent vesicular transport of peroxidase were also made. It is concluded that the endothelial cell junctions are most likely to be the morphological equivalent of the small pore system proposed by physiologists for the passage of small, lipid-insoluble molecules across the endothelium.  相似文献   

11.
Vascular endothelium lines the entire cardiovascular system where performs a series of vital functions including the control of microvascular permeability, coagulation inflammation, vascular tone as well as the formation of new vessels via vasculogenesis and angiogenesis in normal and disease states. Normal endothelium consists of heterogeneous populations of cells differentiated according to the vascular bed and segment of the vascular tree where they occur. One of the cardinal features is the expression of specific subcellular structures such as plas-malemmal vesicles or caveolae, transendothelial channels, vesiculo-vacuolar organelles, endothelial pockets and fenestrae, whose presence define several endothelial morphological types. A less explored observation is the differential expression of such structures in diverse settings of angiogenesis. This review will focus on the latest developments on the components, structure and function of these specific endothelial structures in normal endothelium as well as in diverse settings of angiogenesis.  相似文献   

12.
The relationship between endothelial reactivity to Ulex europaeus agglutinin-1 (UEA-1) and the permeability of the vascular wall in human autopsied cases of cerebral infarction was studied. Sections from the cerebral cortex were reacted with horseradish peroxidase UEA-1 to demonstrate the surface membrane of endothelial cells. Albumin in the neuropil of sections was demonstrated for the estimation of increased vascular permeability. The results showed that endothelial reactivity to UEA-1 was reduced in cases where death had occurred 3 to 5 days after onset of cerebral infarction. Reactivity was also diminished in cases where death had occurred after 13 and 25 days; these cases showed fresh ischemic lesions caused by re-attacks of infarction. Albumin extravasation into the neuropil was demonstrated in these intermediate cases. Chronic cases, dying after more than 52 days, showed no reduction of endothelial reactivity to UEA-1 and no albumin extravasation was proved. It was concluded that UEA-1 can be employed as a useful morphological marker for evaluation of endothelial function and vascular permeability.  相似文献   

13.
Lectin binding in normal and irradiated embryonic mouse tissues on day 10 of gestation was studied by peroxidase techniques. Specific binding ofDolichos biorus lectin (DBA) was detected in the mesodermal blood vessels and in the otic vesicles. The amount of DBA as well as that ofsoybean agglutinin (SBA) andpeanut agglutinin (PNA) increased after exposure to low doses of radiation (0.25, 0.50 and 0.75 Gy). The modifying influence of ionizing radiation was observed in the pituitary region, in the otic vesicles and in the blood vessel endothelium. The greatest effect appeared in the pituitary region at 0.75 Gy, while in the otic vesicles it appeared at 0.50 Gy. A dose-effect relationship was established for the DBA lectin affinity of the vascular endothelium. In comparison to DBA, SBA and PNA displayed more extensive staining after irradiation. The reactivity of these lectins appeared especially pronounced on the blood vessels within the central nervous system and in the luminal surface of the ependymal cells. It is of interest that maximal binding for PNA was observed at 0.25 Gy and for SBA at 0.50 Gy at the junctions between neuroepithelial cells.  相似文献   

14.
One of the most important pathological consequences of renal ischemia/reperfusion (I/R) is kidney malfunctioning. I/R leads to oxidative stress, which affects not only nephron cells but also cells of the vascular wall, especially endothelium, resulting in its damage. Assessment of endothelial damage, its role in pathological changes in organ functioning, and approaches to normalization of endothelial and renal functions are vital problems that need to be resolved. The goal of this study was to examine functional and morphological impairments occurring in the endothelium of renal vessels after I/R and to explore the possibility of alleviation of the severity of these changes using mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decylrhodamine 19 (SkQR1). Here we demonstrate that 40-min ischemia with 10-min reperfusion results in a profound change in the structure of endothelial cells mitochondria, accompanied by vasoconstriction of renal blood vessels, reduced renal blood flow, and increased number of endothelial cells circulating in the blood. Permeability of the kidney vascular wall increased 48 h after I/R. Injection of SkQR1 improves recovery of renal blood flow and reduces vascular resistance of the kidney in the first minutes of reperfusion; it also reduces the severity of renal insufficiency and normalizes permeability of renal endothelium 48 h after I/R. In in vitro experiments, SkQR1 provided protection of endothelial cells from death provoked by oxygen–glucose deprivation. On the other hand, an inhibitor of NO-synthases, L-nitroarginine, abolished the positive effects of SkQR1 on hemodynamics and protection from renal failure. Thus, dysfunction and death of endothelial cells play an important role in the development of reperfusion injury of renal tissues. Our results indicate that the major pathogenic factors in the endothelial damage are oxidative stress and mitochondrial damage within endothelial cells, while mitochondria-targeted antioxidants could be an effective tool for the protection of tissue from negative effects of ischemia.  相似文献   

15.
The thinnest areas of the capillaries of the choroid plexus and ciliary processes in the eye of the rabbit are characterized by the presence of fenestrae. When various colloidal particles opaque to the electron beam (thorotrast, gold sol, and saccharated iron oxide) were injected into the blood stream, none were found in fenestrae or in areas that might suggest their having passed through fenestrae. The passage of marker particles from the lumen to the surrounding connective tissue does take place on occasion in the areas of thicker walls in the capillaries and venules rather than in the attenuated and fenestrated endothelial walls. The pathway taken by these markers may be either through the cytoplasm of the endothelial cells via membrane-bounded vesicles and vacuoles or through the intercellular spaces of the vessels. An altered aqueous humor (cloudy and plasmoid) was produced by endotoxin injection or by making a draining fistula in rabbit cornea. Both methods gave rise to the same changes in the blood vessels of the ciliary processes. Under such conditions of inflammation the passage of colloidal particles through the thicker walls of the capillaries and venules was greatly increased and occurred primarily as an intercellular passage between the endothelial cells. The attenuated and fenestrated areas of the endothelium of the small capillaries remained unchanged with no particles passing through them. These results on the altered vessels of the ciliary processes parallel those of Majno and Palade (26) on the rat cremaster muscle.  相似文献   

16.
Summary Acetylated low density lipoprotein is metabolized by a receptor-mediated process in endothelial cells. We have used the lipoprotein labelled with the fluorescent probe 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate to localize endothelial cells lining blood vessels. Following intravenous injection of the labelled lipoprotein, the vascular sinusoids and all other hepatic blood vessels were clearly labelled in cryostat sections of mouse liver. The endothelium of other organs such as brain, kidney, and testis was also brightly labelled. In addition, the lipoprotein was used to label the endothelium of bovine aorta, the vasculature in the chick chorioallantoic membrane and the vessels in a growing murine melanoma. These results demonstrate that the fluorescent labelled lipoprotein can be used forin situ labelling of the endothelium from large as well as small blood vessels in a variety of species.  相似文献   

17.
Weiser S  Miu J  Ball HJ  Hunt NH 《Cytokine》2007,37(1):84-91
Changes to the cerebral microvasculature are evident during cerebral malaria (CM). Activation of the endothelium is likely to be due to the actions of cytokines, circulating levels of which are elevated during CM. Endothelial cells are known to up-regulate the expression of cellular adhesion molecules, which can lead to cellular sequestration and obstruction of vessels. However, it is unknown whether cytokines synergise in the up-regulation of the adhesion molecules involved in CM. In this study, the mRNA and/or protein expression of the adhesion molecules vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-Selectin were examined in a mouse brain endothelial cell line. Endothelial cells were stimulated with interferon-gamma (IFN-gamma), tumour necrosis factor (TNF) and lymphotoxin-alpha (LT-alpha), alone or in combination. The expression of ICAM-1, VCAM-1, P-selectin and E-Selectin mRNA in mouse brain endothelial cells by TNF and/or LT-alpha was found to be significantly enhanced in the presence of IFN-gamma. The same synergistic effect was found when analyzing ICAM-1 protein expression in cytokine stimulated mouse brain endothelial cells. The findings show that cytokines can synergise to influence gene expression and protein expression in a mouse brain endothelial cell line.  相似文献   

18.
The goal of this work has been to label endothelial cells with fluorescent marker and to record their behavior during angiogenesis in vivo. Single blastomeres in 16-128-cell-stage embryos of pigment-deficient Xenopus laevis were injected intracellularly with 5% tetramethyl-rhodamine dextran. Subsequently, the embryos and tadpoles were examined with an epifluorescence microscope, a silicon-intensified target (SIT) camera, and video recordings. Clones that would include endothelium could be selected as early as stages 33-36 on the basis of heavy labeling in the ventral mesodermal core of the tail. Strands of fluorescent cells and early vessels appeared in the tail at stages 39-41. Subsequently, groups of endothelial cells were followed in case histories in the tail and in the aortic arches and gills of tadpoles. Two main results were that the patterns of fluorescent endothelial cells were stable in established arteries, veins, and capillaries for at least 2-12 days, and that labeled endothelial cells migrated distally in elongating sprouts. In addition, it was inferred that endothelium was derived from multiple blastomeres, probably in the ventral vegetal regions. Only small fractions of total endothelium were labeled from any single blastomere. None of the early blastomeres produced exclusive clones of vascular endothelium; other labeled cell types in various clones included muscle fibers, lymphatics, mesodermal stellate cells, blood cells, gut, proctodeum, and some epidermis, in addition to endothelial cells. The method of intracellular marking of blastomeres is recognized as a direct approach for charting lineage and fate tables in embryos of Xenopus and other species. The present study extends the period of observation in vivo for up to 2 weeks in the growing tadpole and focuses on endothelial cells during angiogenesis. Even though fluorescent dextran was apparently packaged in vesicles and metabolized, individual cells and small groups could be identified and followed with time. This method provides excellent opportunities for addressing problems in vascular development in the living animal.  相似文献   

19.
The ultrastructure of the developing testicular microvasculature in the testes of immature (3, 5, 8, 10, 12, 16, 20, 25, 30 and 35 days old) golden hamsters was examined and compared to the testicular microvasculature of adult (3 months old) hamsters. In addition, in 16- to 35-day-old hamsters vascular permeability was studied after localization of injected horseradish peroxidase (HRP). Angiogenic processes were present in the testes of all examined immature hamsters and were most conspicuous between 8 and 25 days of age. These processes were absent in the testes of 3-month-old hamsters. On days 3 and 5, few undifferentiated blood vessels with activated endothelium were present in the interstitial spaces. Endothelial cell migration started from these 'mother vessels' and led to invasion of intertubular spaces by vascular sprouts, before vascularization of peritubular spaces occurred (after day 12). Sprouting endothelial cells were identified by the presence of a basal lamina and characterized by abundant cytoplasm and cell organelles. HRP-positive slits were seen in developing vessels, which opened to form the vascular lumen. HRP exited the vascular lumen through unspecialized endothelial contacts and micropinocytotic vesicles. By day 16, the blood-testis barrier prevented HRP from entering the seminiferous tubules beyond the basal compartment. By days 30 and 35 most testicular microvessels and at the age of 3 months all testicular microvessels were of the mature type, with narrow inactive endothelium and specialized cell contacts (including tight junctions). These results demonstrate that the postnatal vascularization of the testis in the golden hamster is a timed complex process. Due to high permeability, vascular sprouts are likely to influence the metabolic situation and thus the maturation processes of the testis. Angiogenesis in the golden hamster testis shares typical morphological features with angiogenic processes in other organs and species under various pathological and physiological conditions. We therefore conclude that the postnatal testis can be viewed as a physiological model of angiogenesis.  相似文献   

20.
The structure of lymphatic capillaries in lymph formation.   总被引:11,自引:0,他引:11  
The lymphatic vascular system consists of endothelial lined vessels which begin as blind-end tubes or saccules that are located within the connective tissue areas. This system serves as a one-way drainage apparatus for the removal of diffusible substances as well as plasma proteins that escape the blood capillaries. If permitted to accumulate, these escaped components would deplete the circulatory system of its plasma colloids and disrupt the balance of forces responsible for the control of fluid movement and the exchange of gases and fluids across the blood vascular wall. The lymphatic capillaries are strategically placed and anatomically constructed to permit a continuous and rapid removal of the transient interstitial fluids, plasma proteins, and cells from the interstitium. Structurally the lymphatic capillaries consist of a continuous endothelium that is extremely attenuated over major aspects of its diameter, except in the perinuclear region which bulges into the lumen. These vessels lack a continuous basal lamina and maintain a close relationship with the adjoining interstitium by way of anchoring filaments. The adjacent cells are extensively overlapped and lack adhesion devices in many areas. When electron-opaque tracers are injected intravenously (i.e., horseradish peroxidase and ferritin), subsequent electron microscopic examination of tissues reveals the presence of tracer particles within the interstitium and the lymphatic capillary lumen. These particles gain access into the lymphatic capillaries via two major pathways: 1) the intercellular clefts of patent junctions and 2) plasmalemmal vesicles (pinocytotic vesicles). Another salient feature of the lymphatic endothelial cell includes the presence of numerous cytoplasmic filaments, which are similar in morphology to the actin filaments observed in a variety of cell types. The ultrastructural features of the lymphatic capillaries are discussed in relation to their role in the removal of interstitial fluids and particulate matter, and in the formation of lymph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号