首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By enrichment with xylose, nine mesophilic strains of anaerobic bacteria were obtained from various sources. Two isolates appear to belong to the genus Eubacterium. Six other strains belong to the genus Clostridium. Three of the isolated strains utilized larch wood xylan. The percentage of utilization of xylose and xylan and the yield of fermentation end products — viz. acetic acid and butyric acid-are equivalent to that of Clostridium acetobutylicum (ATCC 824) and reported thermophilic strains.  相似文献   

2.
Xylanolytic Activity of Clostridium acetobutylicum   总被引:12,自引:9,他引:3       下载免费PDF全文
Of 20 strains of Clostridium spp. screened, 17 hydrolyzed larch wood xylan. Two strains of Clostridium acetobutylicum, NRRL B527 and ATCC 824, hydrolyzed xylan but failed to grow on solid media with larch xylan as the sole carbon source; however, strain ATCC 824 was subsequently found to grow on xylan under specified conditions in a chemostat. These two strains possessed cellulolytic activity and were therefore selected for further studies. In cellobiose-limited continuous cultures, strain NRRL B527 produced maximum xylanase activity at pH 5.2. Strain ATCC 824 produced higher xylanase, xylopyranosidase, and arabinofuranosidase activities in chemostat culture with xylose than with any other soluble carbon source as the limiting nutrient. The activities of these enzymes were markedly reduced when the cells were grown in the presence of excess glucose. The xylanase showed maximum activity at pH 5.8 to 6.0 and 65°C. The enzyme was stable on the alkaline side of pH 5.2 but was unstable below this pH value. The extracellular xylanolytic activity from strain ATCC 824 hydrolyzed 12% of the larch wood xylan during a 24-h incubation period, yielding xylose, xylobiose, and xylotriose as the major hydrolysis products. Strain ATCC 824, after being induced to grow in batch culture in xylan medium supplemented with a low concentration of xylose, failed to grow reproducibly in unsupplemented xylan medium. A mutant obtained by mutagenesis with ethyl methanesulfonate was able to grow reproducibly in batch culture on xylan. Both the parent strain and the mutant were able to grow with xylan as the sole source of carbohydrate in continuous culture with the pH maintained at either 5.2 or 6.0. Under these conditions, the cells utilized approximately 50% of the xylan.  相似文献   

3.
The yeast-like fungus Coniochaeta pulveracea was studied with regard to its novel lignocellulolytic activities and the possible effect thereof on yeasts from the woody phylloplane. An enrichment procedure was used to isolate C. pulveracea from a decaying Acacia tree, and the identity of the isolate was confirmed using morphology, as well as molecular and phylogenetic techniques. This isolate, as well as strains representing C. pulveracea from different geographical regions, were compared with regard to optimum growth temperature and enzyme activity to representatives of closely related species. These include strains of Coniochaeta boothii, Coniochaeta rhopalochaeta, and Coniochaeta subcorticalis. Plate assays for cellulase and xylanase activity indicated that all representatives of the above-mentioned species were able to produce extracellular hydrolytic enzymes and were also able to degrade birchwood toothpicks during a 50-day incubation period at 30°C. To test the ability of these fungi and their enzymes to release simple sugars from complex cellulosic substrates, filtrates obtained from liquid cultures of Coniochaeta, cultivated on carboxymethyl cellulose (CMC) as sole carbon source, were analyzed using high-performance liquid chromatography analysis. Consequently, the presence of mono- and disaccharides such as glucose and cellobiose was confirmed in these culture filtrates. Two subsequent experiments were conducted to determine whether these simple sugars released from woody material by Coniochaeta may enhance growth of phylloplane yeasts. In the first experiment, representatives of Coniochaeta were co-cultured with selected yeasts suspended in agar plates containing birchwood toothpicks, followed by examination of plates for colony formation. Results indicated that Coniochaeta growth on the toothpicks enhanced growth of nearby yeast colonies in the agar plates. In the second experiment, representatives of selected yeasts and Coniochaeta species were co-cultured on CMC and xylan-containing plates where after yeast colony formation was recorded on the plates. Saccharomyces cerevisiae strains, engineered to utilize specific wood degradation products, i.e., cellobiose or xylose, as sole carbon source were used as positive controls. While it was found that cellobiose released from CMC was assimilated by the yeasts, no evidence could be obtained that xylose released from xylan was used as carbon source by the yeasts. These ambiguous results could be ascribed to secretion of nutritious metabolic end products, other than the products of fungal xylanases.  相似文献   

4.
In this study, yeasts associated with lignocellulosic materials in Brazil, including decaying wood and sugarcane bagasse, were isolated, and their ability to produce xylanolytic enzymes was investigated. A total of 358 yeast isolates were obtained, with 198 strains isolated from decaying wood and 160 strains isolated from decaying sugarcane bagasse samples. Seventy-five isolates possessed xylanase activity in solid medium and were identified as belonging to nine species: Candida intermedia, C. tropicalis, Meyerozyma guilliermondii, Scheffersomyces shehatae, Sugiyamaella smithiae, Cryptococcus diffluens, Cr. heveanensis, Cr. laurentii and Trichosporon mycotoxinivorans. Twenty-one isolates were further screened for total xylanase activity in liquid medium with xylan, and five xylanolytic yeasts were selected for further characterization, which included quantitative analysis of growth in xylan and xylose and xylanase and β-d-xylosidase activities. The yeasts showing the highest growth rate and cell density in xylan, Cr. laurentii UFMG-HB-48, Su. smithiae UFMG-HM-80.1 and Sc. shehatae UFMG-HM-9.1a, were, simultaneously, those exhibiting higher xylanase activity. Xylan induced the highest level of (extracellular) xylanase activity in Cr. laurentii UFMG-HB-48 and the highest level of (intracellular, extracellular and membrane-associated) β-d-xylosidase activity in Su. smithiae UFMG-HM-80.1. Also, significant β-d-xylosidase levels were detected in xylan-induced cultures of Cr. laurentii UFMG-HB-48 and Sc. shehatae UFMG-HM-9.1a, mainly in extracellular and intracellular spaces, respectively. Under xylose induction, Cr. laurentii UFMG-HB-48 showed the highest intracellular β-d-xylosidase activity among all the yeast tested. C. tropicalis UFMG-HB 93a showed its higher (intracellular) β-d-xylosidase activity under xylose induction and higher at 30 °C than at 50 °C. This study revealed different xylanolytic abilities and strategies in yeasts to metabolise xylan and/or its hydrolysis products (xylo-oligosaccharides and xylose). Xylanolytic yeasts are able to secrete xylanolytic enzymes mainly when induced by xylan and present different strategies (intra- and/or extracellular hydrolysis) for the metabolism of xylo-oligosaccharides. Some of the unique xylanolytic traits identified here should be further explored for their applicability in specific biotechnological processes.  相似文献   

5.
Summary An amyloglucosidase from a mycelial culture of the mushroom Termitomyces clypeatus hydrolysed larch wood xylan independently and synergistically with an endo-(14) xylanase of the same fungus. The glucoamylase saccharified xylan predigested with xylanase at a faster rate compared to that of xylanase acting on amylase-digested xylan. However, overall saccharification of xylan in both cases was the same. Only glucose was liberated from xylan by amylase digestion whereas xylose, xylobiose and other oligosaccharides were liberated during xylanase digestion. The synergistic response of enzyme combinations was reflected in the liberation of glucose from xylan, rather than xylose. Glucoamylase and xylanase activities on soluble and insoluble fractions of larch wood xylan with different xylose and glucose contents suggested that synergism in xylanolysis by the presence of glucoamylase was dependent on the activity of the participating xylanase on the xylan preparation. It is suggested that possibly -glucosidic linkages are present in xylan and that amyloglucosidase might be involved in xylanolysis. Correspondence to: S. Sengupta  相似文献   

6.
Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the l-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more l-glutamate and l-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM l-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM l-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.  相似文献   

7.
Summary A recently developed technique for determining the ploidy of fungal cells has been used to examine the relative ploidy levels of culture collection strains of two xylose-fermenting yeasts Candida shehatae and Pichia stipitis and their respective R strains. The R strains have been shown to have increased ploidy by at least a factor of two during their recycling in stressing media, namely wood hydrolysates. Their improved efficiency in xylose fermentation may be attributed at least in part to their increased ploidy.Offprint requests to: N. J. Talbot  相似文献   

8.
Xylitol production from xylose by two yeast strains: Sugar tolerance   总被引:8,自引:0,他引:8  
The kinetics and enzymology ofd-xylose utilization are studied in micro-, semi-, and aerobic batch cultures during growth ofCandida guilliermondii andCandida parapsilosis in the presence of several initial xylose concentrations. The abilities of xylitol accumulation by these two yeast strains are high and similar, although observed under various growth conditions. WithCandida parapsilosis, optimal xylitol production yield (0.74 g/g) was obtained in microaerobiosis with 100 g/L of xylose, whereas optimal conditions to produce xylitol byCandida guilliermondii (0.69 g/g) arose from aerobiosis with 300 g/L of sugar. The different behavior of these yeasts is most probably explained by differences in the nature of the initial step of xylose metabolism: a NADPH-linked xylose reductase activity is measured with a weaker NADH-linked activity. These activities seem to be dependent on the degree of aerobiosis and on the initial xylose concentration and correlate with xylitol accumulation.  相似文献   

9.
Summary Maximum xylanase production byChaetomium cellulolyticum was obtained in the culture supernatant after 30 h of growth at 37°C in basal medium containing 1% xylan at pH maintained between 6.5 and 7.5. Addition of 0.05% Tween 80 to the medium increased the enzyme production considerably. Xylanase production was found to be growth associated. The optimal conditions for enzymatic hydrolysis of xylan were found to be pH 6.0 and 50°C. During enzymatic hydrolysis, xylose, xylobiose and other xylooligosaccharides were liberated from xylan. The pH values for xylanase production and for xylan hydrolysis were closely related to the utilization of hemicelluloses of aspen wood for fungal protein production by this organism as reported in our earlier work.  相似文献   

10.
Aims:  Isolation and identification of yeasts converting xylose to ethanol.
Methods and Results:  A total of 374 yeasts were isolated from a variety of rotten fruits and barks of trees. Out of these, 27 yeast strains were able to assimilate xylose and produce 0·12–0·38 g of ethanol per gram of xylose. Based on phylogenetic analysis of D1/D2 domain sequence of LSU (Large Subunit) rRNA gene and phenotypic characteristics the ethanol-producing strains were identified as member(s) of the genera Pichia, Candida , Kluyveromyces, Issatchenkia, Zygosacchraomyces , Clavispora, Debaryomyces , Metschnikowia , Rhodotorula and Cryptococcus.
Conclusion:  Yeast strains producing ethanol from xylose have been isolated from a variety of rotten fruits and barks of trees and identified.
Significance and Impact of the Study:  Environmental isolates of yeasts which could convert xylose to ethanol could form the basis for bio-fuel production and proper utilization of xylan rich agricultural and forest wastes.  相似文献   

11.
Hemicellulose-degrading bacteria and yeasts from the termite gut   总被引:3,自引:1,他引:2  
Termites play a major role in the recycling of photosynthetically fixed carbon. With the aid of their symbiotic intestinal flora, they are able to degrade extensively wood constituents such as cellulose and hemicellulose. Nevertheless, the microbial species involved in the degradation of hemicelluloses are poorly defined. The purpose of this paper was to examine the microflora involved in hemicellulose degradation. Different aerobic and facultatively anaerobic bacteria and yeasts were isolated using xylan, arabinogalactan and carboxymethylcellulose as substrates. Gram-positive isolates belonged to the genera Bacillus, Paenibacillus, Streptomyces or the actinobacteria group, while the Gramnegative strains were assigned to the genera Pseudomonas, Acinetobacter, Ochrobactrum , and to genera belonging to the family Enterobacteriaceae. The spectrum and activity of xylan- and arabinogalactan-hydrolysing glycosidases of these new isolates, together with additional bacterial strains originally obtained from enrichments with aromatic compounds were determined.  相似文献   

12.
Summary The kinetics and enzymology of d-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis cultures of C. utilis did not show fermentation of xylose; in Pa. tannophilus a very low rate of ethanol formation was apparent, whereas with Pi. stipitis rapid fermentation of xylose occurred. The different behaviour of these yeasts ist most probably explained by differences in the nature of the initial steps of xylose metabolism: in C. utilis xylose is metabolized via an NADPH-dependent xylose reductase and an NAD+-linked xylitol dehydrogenase. As a consequence, conversion of xylose to ethanol by C. utilis leads to an overproduction of NADH which blocks metabolic activity in the absence of oxygen. In Pa. tannophilus and Pi. stipitis, however, apart from an NADPH-linked xylose reductase also an NADH-linked xylose reductase was present. Apparently xylose metabolism via the NADH-dependent reductase circumvents the imbalance of the NAD+/NADH redox system, thus allowing fermentation of xylose to ethanol under anaerobic conditions. The finding that the rate of xylose fermentation in Pa. tannophilus and Pi. stipitis corresponds with the activity of the NADH-linked xylose reductase activity is in line with this hypothesis. Furthermore, a comparative study with various xylose-assimilating yeasts showed that significant alcoholic fermentation of xylose only occurred in those organisms which possessed NADH-linked aldose reductase.  相似文献   

13.
The focus of this work was to determine the utility of 1H NMR spectroscopy in the quantification of sugars resulting from the solubilization of hemicelluloses during the autohydrolysis of hardwoods and the use of this technique to evaluate the kinetics of this process over a range of temperatures and times. Yields of residual xylan, xylooligomers, xylose, glucose, and the degraded products of sugars, i.e., furfural and HMF (5-hydroxymethyl furfural), were determined. The monosaccharide and oligomer contents were quantified with a recently developed high resolution 1H NMR spectroscopic analysis. This method provided precise measurement of the residual xylan and cellulose remaining in the extracted wood samples and xylose and glucose in the hydrolyzates. NMR was found to exhibit good repeatability and provided carbohydrate compositional results comparable to published methods for sugar maple and aspen woods.  相似文献   

14.
Summary Besides nitrate-utilizing species and strains which also always are nitrite-positive, steadily nitrite-utilizing strains were found among the nitratenegatives of Cr. laurentii and D. hansenii. For other strains of these species, of T. famata, as well as of C. suecica and C. zeylanoides the nitrite media used seemed to provoke a genotypic adaptation (Figs. 1 and 2). This potential ability to utilize nitrite, may be of ecological significance to these arine occurring yeasts.Nine strains did grow with hydroxylamine as the sole nitrogen source in auxanograms. Only C. zeylanoides was able to give turbidimetrically measurable growth at the concentrations used, ranging from 0.133 to 3.33mm hydroxylamine. A phenotypic adaptation did occur. The hydroxylamine concentration in the culture medium was gradually reduced to zero during growth. Aldoxime formation in the culture medium was not a prerequisite for growth.Hydroxylamine reductase activity of cell-free enzyme preparations from C. zeylanoides has been proved.  相似文献   

15.
Summary A novel yeast strain, NCIM 3574, isolated from a decaying wood produced up to 570 IU ml–1 of xylanolytic enzymes when grown on medium containing 4% xylan. The yeast strain also produced xylanase activity (40–50 IU ml–1) in the presence of soluble carbon sources like xylose or arabinose. No xylanase activity was detected when the organism was grown on glucose. The crude xylanase preparation showed no activity towards cellulolytic substrates but low levels of -xylosidase (0.1 IU ml–1) and -l-arabinofuranosidase (0.05 IU ml–1) were detected. The temperature and pH optima for the crude xylanase preparation were 55°C and 4.5 respectively. The crude xylanase produced mainly xylose from xylan within 5 min. Prolonged hydrolysis of xylan produced xylobiose and arabinose, in addition to xylose, as the end products. The presence of arabinose as one of the end products in xylan hydrolysate could be due to the low levels of arabinofuranosidase enzyme present in the crude fermentation broth.  相似文献   

16.
The aim of this study was to examine the physiological and genetic stability of the industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum under acidic stress during fermentation. The yeasts were sub-cultured in aerobic or fermentative conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes, and mitochondrial DNA profiles were assessed after minimum 50 generations. All yeast segregates showed a tendency to increase the range of compounds used as sole carbon sources. The wild strains and their segregates were aneuploidal or diploidal. One of the four strains of S. cerevisiae did not reveal any changes in the electrophoretic profiles of chromosomal and mitochondrial DNA, irrespective of culture conditions. The extent of genomic changes in the other yeasts was strain-dependent. In the karyotypes of the segregates, the loss of up to 2 and the appearance up to 3 bands was noted. The changes in their mtDNA patterns were much broader, reaching 5 missing and 10 additional bands. The only exception was S. bayanus var. uvarum Y.00779, characterized by significantly greater genome plasticity only under fermentative stress. Changes in karyotypes and mtDNA profiles prove that fermentative stress is the main driving force of the adaptive evolution of the yeasts. l-malic acid does not influence the extent of genomic changes and the resistance of wine yeasts exhibiting increased demalication activity to acidic stress is rather related to their ability to decompose this acid. The phenotypic changes in segregates, which were found even in yeasts that did not reveal deviations in their DNA profiles, show that phenotypic characterization may be misleading in wine yeast identification. Because of yeast gross genomic diversity, karyotyping even though it does not seem to be a good discriminative tool, can be useful in determining the stability of wine yeasts. Restriction analysis of mitochondrial DNA appears to be a more sensitive method allowing for an early detection of genotypic changes in yeasts. Thus, if both of these methods are applied, it is possible to conduct the quick routine assessment of wine yeast stability in pure culture collections depositing industrial strains.  相似文献   

17.
In the dilute acid pretreatment of lignocellulose, xylose substituted with α-1,2-methylglucuronate is released as methylglucuronoxylose (MeGAX), which cannot be fermented by biocatalysts currently used to produce biofuels and chemicals. Enterobacter asburiae JDR-1, isolated from colonized wood, efficiently fermented both MeGAX and xylose in acid hydrolysates of sweetgum xylan. Deletion of pflB and als genes in this bacterium modified the native mixed acid fermentation pathways to one for homolactate production. The resulting strain, Enterobacter asburiae L1, completely utilized both xylose and MeGAX in a dilute acid hydrolysate of sweetgum xylan and produced lactate approximating 100% of the theoretical maximum yield. Enterobacter asburiae JDR-1 offers a platform to develop efficient biocatalysts for production of fuels and chemicals from hemicellulose hydrolysates of hardwood and agricultural residues.  相似文献   

18.
Fermentation of xylooligosaccharides by 11 strains of Selenomonas ruminantium was examined. Xylooligosaccharides were prepared by the partial hydrolysis of oat spelt xylan in dilute phosphoric acid (50 mM, 121°C, 15 min) and were added to a complex, yeast extract-Trypticase-containing medium. Strains of S. ruminantium varied considerably in their capacity to ferment xylooligosaccharides. Strains GA192, GA31, H18, and D used arabinose, xylose, and the oligosaccharides xylobiose through xylopentaose, as well as considerable quantities of larger, unidentified oligosaccharides. Other strains of S. ruminantium (HD4, HD1, 20-21a, H6a, W-21, S23, 5-1) were able to use only the simple sugars present in the substrate mixture. The ability of S. ruminantium strains to utilize xylooligosaccharides was correlated with the presence of xylosidase and arabinosidase activities. Both enzyme activities were induced by growth on xylooligosaccharides, but no activity was detected in glucose- or arabinose-grown cultures. Xylooligosaccharide-fermenting strains of S. ruminantium exhibited considerable variation in substrate utilization patterns, and the assimilation of individual carbohydrate species also appeared to be regulated. Lactic, acetic, and propionic acids were the major fermentation end products detected. Received: 2 August 1997 / Accepted: 18 September 1997  相似文献   

19.
Bioconversion of Xylan to Triglycerides by Oil-Rich Yeasts   总被引:2,自引:1,他引:1       下载免费PDF全文
A series of lipid-accumulating yeasts was examined for their potential to saccharify xylan and accumulate triglyceride. Of the genera tested, including Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula, and Trichosporon, only Cryptococcus and Trichosporon isolates saccharified xylan. All of the strains could assimilate xylose and accumuate triglyceride under nitrogen-limiting conditions. Strains of Cryptococcus albidus were found to be especially useful for a one-step saccharification of xylan coupled to triglyceride synthesis. Cryptococcus terricolus, a strain constitutive for lipid accumulation, lacked extracellular xylanase, but did assimilate xylose and xylobiose and was able to continuously convert xylan to triglyceride if the culture medium was supplemented with xylanase.  相似文献   

20.
Bacillus sp. 11-IS, a strain of thermophilic acidophilic bacteria, produced an extracellular xylanase during growth on xylan. The enzyme purified from the culture supernatant solution was homogeneous on disc-gel electrophoresis. The molecular weight was calculated to be 56,000 by SDS-gel electrophoresis. The enzyme had a pH optimum for activity at 4.0, and its stability range was pH 2.0 ~ 6.0. The temperature optimum was 80°C (10-min assay); however, the enzyme retained full activity after incubation at 70°C for 15 min. The enzyme acted on carboxymethyl cellulose (CMC) and cellulose, as well as on xylan. The Michaelis constants for larchwood xylan and CMC were calculated to be 1.68 mg xylose eq/ml and 0.465 mg glucose eq/ml, respectively. The predominant hydrolysis products from larchwood xylan were xylobiose, xylotriose, and xylose; the release of arabinose from rice-straw arabinoxylan was not detected. CMC was cleaved to cellobiose and larger oligosaccharides. Thus, the enzyme is considered to be an endoenzyme which degrades the β-1,4-glycosyl linkages in xylan and cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号