共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we found that whole body exposure to static magnetic fields (SMF) at 10 mT (B(max)) and 25 mT (B(max)) for 2-9 weeks suppressed and delayed blood pressure (BP) elevation in young, stroke resistant, spontaneously hypertensive rats (SHR). In this study, we investigated the interrelated antipressor effects of lower field strengths and nitric oxide (NO) metabolites (NO(x) = NO(2)(-) + NO(3)(-)) in SHR. Seven-week-old male rats were exposed to two different ranges of SMF intensity, 0.3-1.0 mT or 1.5-5.0 mT, for 12 weeks. Three experimental groups of 20 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham-exposed control); (2) 1 mT SMF exposure with ip saline injection (1 mT); (3) 5 mT SMF exposure with ip saline injection (5 mT). Arterial BP, heart rate (HR), skin blood flow (SBF), plasma NO metabolites (NO(x)), and plasma catecholamine levels were monitored. SMF at 5 mT, but not 1 mT, significantly suppressed and retarded the early stage development of hypertension for several weeks, compared with the age matched, unexposed (sham exposed) control. Exposure to 5 mT resulted in reduced plasma NO(x) concentrations together with lower levels of angiotensin II and aldosterone in SHR. These results suggest that SMF may suppress and delay BP elevation via the NO pathways and hormonal regulatory systems. 相似文献
2.
Effects of static magnetic fields (SMFs) on development of hypertension were investigated using young male, stroke resistant, spontaneously hypertensive rats (SHRs) beginning at 7 weeks of age. SHRs were randomly assigned to two different exposure groups or an unexposed group. The SHRs in the exposure groups were constantly exposed to two different types of external SMFs of 3.0-10.0 mT or 8.0-25.0 mT for 12 weeks. The SMFs were generated from permanent magnetic plates attached to the rat cage. The blood pressure (BP) of each rat was determined at weekly intervals using indirect tail-cuff method. The SMFs suppressed and retarded the development of hypertension in both exposed groups to a statistically significant extent for several weeks, as compared with an unexposed group. The antipressor effects were related to the extent of reduction in plasma levels of angiotensin II and aldosterone in the SHRs. These results suggest that the SMFs of mT intensities with spatial gradients could be attributable to suppression of early BP elevation via hormonal regulatory system. 相似文献
3.
Nitric oxide (NO) is involved in osteoclast differentiation. Our previous studies showed that static magnetic fields (SMFs) could affect osteoclast differentiation. The inhibitory effects of 16 T of high SMF (HiMF) on osteoclast differentiation was correlated with increased production of NO. We raised the hypothesis that NO mediated the regulatory role of SMFs on osteoclast formation. In this study, 500 nT of hypomagnetic field (HyMF), 0.2 T of moderate SMF (MMF) and 16 T of high SMF (HiMF) were utilized as SMF treatment. Under 16 T, osteoclast formation was markedly decreased with enhanced NO synthase (NOS) activity, thus producing a high level of NO. When treated with NOS inhibitor N-Nitro-L-Arginine Methyl Ester (L-NAME), NO production could be inhibited, and osteoclast formation was restored to control group level in a concentration-dependent manner. However, 500 nT and 0.2 T increased osteoclast formation with decreased NOS activity and NO production. When treated with NOS substrate L-Arginine (L-Arg) or NO donor sodium nitroprusside (SNP), the NO level in the culture medium was obviously elevated, thus inhibiting osteoclast differentiation in a concentration-dependent manner under 500 nT or 0.2 T. Therefore, these findings indicate that NO mediates the regulatory role of SMF on osteoclast formation. 相似文献
4.
The effects of exposure to static (1–100 mT) or sinusoidal (1 Hz, 1.6 mT) magnetic fields on the production of nitric oxide (NO) by murine BCG-activated macrophages were investigated. In these cells, the inducible isoform of NO synthase is present. No significant differences were observed in nitrite levels among exposed, sham-exposed, or control macrophages after exposure for 14 h to static fields of 1, 10, 50, and 100 mT and to sinusoidal 1.6 mT, 1 Hz magnetic fields. © 1996 Wiley-Liss, Inc. 相似文献
5.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc. 相似文献
6.
Juraj Gmitrov 《Bioelectromagnetics》2020,41(6):447-457
The goal was to compare static magnetic field (SMF, generated by Nd2–Fe14–B magnets) vasodilator capacity with verapamil (VER, a potent, clinically verified Ca2+ channel-blocking agent), aimed to assess SMF implementation in conditions with vascular ischemia. Skin microcirculatory blood flow measured by microphotoelectric plethysmogram was recorded in conscious rabbits after 40 min of 0.25 T SMF regional exposure to ear microvascular net (SMF-Vas, n = 20), or 0.35 T to carotid baroreceptors (SMF-Car, n = 14), and compared with that after 30 min VER intravenous infusion (20 µg/kg/min, n = 20). The principal finding is that SMF-Vas, SMF-Car, and VER significantly increased microcirculatory blood flow by 17.9 ± 9.58%, 22.6 ± 11.11%, and 30.5 ± 14.06% (mean ± SEM) respectively, and there was no significant difference between all three treatments (P = 0.986). Microvascular dilation was accompanied by significant decrease of blood pressure in VER and SMF-Car cases. The decrease of arterial baroreflex sensitivity in VER contrasted with its increase in SMF-Car, coupled with improved vessel sensitivity to nitric oxide (NO) dilatory effect. This suggests that SMF can have a strong vasodilator property tailored to address diabetic, mainly NO-deficient, neural, and myogenic microvascular dysfunction, especially employing both SMFs’ vasodilation synergy. Bioelectromagnetics. 2020;41:447–457. © 2020 Bioelectromagnetics Society. 相似文献
7.
8.
《Electromagnetic biology and medicine》2013,32(3):310-315
In our previous works, we reported that compensation of the geomagnetic field to a level less than 0.4?μT (“zero magnetic field,” or ZMF) affected human cognitive processes. ZMF exposure increased the number of errors and the task processing time by 2.4% in average. However, in the array of the magnetic effects calculated from the experimental data, some readings have been found to deviate from the mean magnetic effect by more than three standard deviations. This finding could give rise to doubt as to whether the magnetic effect observed was a mere sequence of the presence of such unlikely data values. In the present work we examine the results of the unlikely data elimination and show that the corrected magnetic effect in tested humans remains statistically significant, though at a reduced magnitude 1.5%. 相似文献
9.
The important experiments showing nonlinear amplitude dependences of the neurite outgrowth in pheochromocytoma nerve cells due to ELF magnetic field exposure had been carried out in a nonuniform ac magnetic field. The nonuniformity entailed larger than expected variances in magnetic field magnitudes associated with specific levels of biological effects, thereby evoking a question about validity of the interpretations formulated for the case of a uniform field. In this work, we calculate the relative value of nonuniformity and deviations in ac magnetic field. It is shown that these factors do not affect the main conclusion in the original papers about the form of the amplitude dependence of the observed biological effect. 相似文献
10.
一氧化氮对家兔压力感受器活动的影响 总被引:2,自引:1,他引:2
本实验旨在研究外源性一氧化氮对家兔离体颈动脉窦压力感受器活动的影响,进一步探讨这种影响是否由cGMP所介导。实验中发现:(1)窦神经传入纤维基础放电大致可分为高幅值和低幅值两种,其中高幅值放电对经典的化学感受性刺激无反应并呈现显著的灌流速度依赖性。这些放电特征证明其不是来自于颈动脉体化学感受器而是来自CS-BR。(2)NO的前体L-精氨酸(4.6 ̄5.7nmol/L)和供体硝酸甘油(0.07 ̄0. 相似文献
11.
Sienkiewicz Z 《Progress in biophysics and molecular biology》2005,87(2-3):365-372
There is a paucity of information regarding the long-term health effects associated with exposure to static magnetic fields. Perceptual and other acute effects have been demonstrated above a threshold of about 2 T, and these form the basis for human exposure standards at present. Exposures well above this threshold are increasingly becoming more common as the technology associated with magnetic resonance imaging advances. Therefore, priority should be given to assessing the health risks associated with exposures to such fields. Studies should include a prospective cohort study investigating cancer risks of workers and patients exposed to fields in excess of 2 T, a study investigating effects on human cognitive performance from repeated exposures, and a molecular biology study investigating acute changes in genomic responses in volunteers exposed to fields of up to 8 T. Studies investigating the effects of long-term exposure on cancer, and on neurobehavioural development are also recommended using animals, where the use of transgenic models is encouraged. In addition, dosimetric studies should be conducted using high-resolution male, female and pregnant voxel phantoms, as should theoretical studies investigating the local currents induced in the eye and in the heart by movement during exposure. Finally, studies are recommended to investigate further the ability of static magnetic fields to significantly affect radical pair reactions in biological systems. 相似文献
12.
Tiboni GM Marotta F Barbacane L 《Birth defects research. Part B, Developmental and reproductive toxicology》2007,80(1):28-33
BACKGROUND: To test whether the differentiating embryo is susceptible to the teratogenic effects of the nitric oxide (NO) synthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME). METHODS: ICR-(CD-1) mice received a single intraperitoneal injection of L-NAME at 90, 150, or 300 mg/kg on Gestation Day (GD) 8 or 9. Controls were treated with vehicle on GD 8 and 9. Teratological assessments were carried out near term (GD 18). RESULTS: Maternal treatment with a single dose of L-NAME at 150 or 300 mg/kg on either GD 8 or 9 produced axial skeletal defects in the ICR (CD-1) mouse fetuses. Other treatment-related effects included increased embryo lethality and fetal growth restriction. CONCLUSIONS: This study provides evidence that in utero exposure to L-NAME can affect organogenesis of the axial skeleton. 相似文献
13.
Alejandro Ubeda María A. Trillo Lucía Chacn María J. Blanco Jocelyne Leal 《Bioelectromagnetics》1994,15(5):385-398
Several reports have shown that weak, extremely-low-frequency (ELF), pulsed magnetic fields (PMFs) can adversely affect the early embryonic development of the chick. In this study, freshly fertilized chicken eggs were exposed during the first 48 h of postlaying incubation to PMFs with 100 Hz repetition rate, 1.0 μT peak-to-peak amplitude, and 500 μs pulse duration. Two different pulse waveforms were used, having rise and fall times of 85 μs (PMF-A) or 2.1 μs (PMF-B). It has been reported that, with 2 day exposure, these fields significantly increase the proportion of developmental abnormalities. In the present study, following exposure, the eggs were allowed to incubate for an additional 9 days in the absence of the PMFs. The embryos were taken out of the eggs and studied blind. Each of the two PMF-exposed groups showed an excess in the percentage of developmental anomalies compared with the respective sham-exposed samples. This excess of anomalies was not significant for the PMF-A-treated embryos (P = 0.173), whereas it was significant for the PMF-B-exposed group (P = 0.007), which showed a particularly high rate of early embryonic death. These results reveal that PMFs can induce irreversible developmental alterations and confirm that the pulse waveform can be a determinant factor in the embryonic response to ELF magnetic fields. The data also validate previous work based on the study of PMFs' effects at day 2 of embryonic development under field exposure. © 1994 Wiley-Liss, Inc. 相似文献
14.
红细胞抗高血压因子舒血管作用机制的研究 总被引:7,自引:0,他引:7
本实验研究了从Sprague-Dawley大鼠红细胞中提取的抗高血压因子(antihypertensivefactor,AHF)对苯肾上腺素引起的Wistar大鼠胸主动脉螺旋条预收缩的舒张作用。结果表明:AHF对主动脉条的舒张呈内皮与剂量依赖性。左旋硝基精氨酸与美蓝均可阻断AHF的舒血管作用,而铜锌超氧化物歧化酶对AHF的舒血管效应有促进作用。提示AHF是通过刺激内皮细胞产生一氧化氨或其类似物,从而激活血管平滑肌细胞内可溶性鸟苷酸环化酶这一途径引起血管舒张的。 相似文献
15.
Frank S. Prato Martin Kavaliers Anthony P. Cullen Alex W. Thomas 《Bioelectromagnetics》1997,18(3):284-291
Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (BDC) and ELF magnetic field amplitude (peak) and direction (BAC) set according to the predictions of the PRM for Ca2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc. 相似文献
16.
This paper demonstrates the application of effects function analysis to residential magnetic field exposure, focusing on appliance sources and mitigation choices. Residential field exposure time series were synthesized by using a sample of background household field measurements, a model of average daily appliance use, and a small sample of EMDEX data of field exposure from 12 household appliances. Four alternative effects functions (average field strength with or without a threshold, field strength window, sudden field changes) were simulated by using the synthesized time series data for different exposure situations, such as high and low levels of appliance use, simple avoidance, and use of a set of hypothetical “low field” appliances (50% lower fields). In particular, field exposure from the use of bedside clocks and electric blankets was examined. Results demonstrate that the choice of effects function is critical for the ranks of field sources and exposure reduction choices. For the effects function of average field strength with or without a threshold, exposure from background fields dominated exposure from all appliances except for bedside clocks and electric blankets. In the case of the field strength window effects function, the dominant field sources changed with the width of the window. For the effects function based on rapid field changes, appliance use was the major source of exposure. Because of the small sample size of our data set and other simplifications, specific results should be viewed as illustrative. Bioelectromagnetics 18:116–124, 1997. © 1997 Wiley-Liss, Inc. 相似文献
17.
Eduardo Ramirez Jos L. Monteagudo Manuel Garcia-Gracia Jos M. R. Delgado 《Bioelectromagnetics》1983,4(4):315-326
Drosophila flies placed in a habitat with two lateral boxes demonstrated sensitivity to magnetic fields: Oviposition decreased by exposure to pulsated extremely low frequency (ELF) (100)Hz, 1.76 miliTesla (mT) and sinusosidal fields (50 Hz, 1 mT), while there was no initial effect of exposure to a static magnetic field (4.5 mT). Drosophila eggs treated for 48 h with the above described fields showed that (1) mortality of eggs was lower in controls than in eggs exposed to all tested magnetic fields; (2) mortality of larvae increased when a permanent magnet was used; (3) mortality of pupae was highest when a permanent magnet was used; and (4) general adult viability was highest in controls (67%) and diminished progressively when eggs were exposed to pulsated (55%), sinusoidal (45%), and static (35%) magnetic fields. 相似文献
18.
Miguel Alcaraz Encarnación Olmos Miguel Alcaraz-Saura Daniel G. Achel Julián Castillo 《Electromagnetic biology and medicine》2014,33(1):51-57
In recent years extremely low-frequency magnetic fields (ELF-EMF) have become widely used in human activities, leading to an increased chance of exposure to ELF-EMF. There are few reports on in vivo mammalian genotoxic effects using micronucleus (MN) assays, which generally have been used as a short-term screening system. We analyzed the possible genotoxic effect induced by long-term exposure (7, 14, 21, 28?d) of a 50?Hz ELM-MF to mice by measuring the increase in frequency of micronucleated polychromatic erythrocyte in their bone marrow (MNPCEs) and we compared it with that induced by 50?cGy of X-rays. Subsequently, we tried to reduce this chromosomal damage by administering four antioxidants substances with radioprotective capacities: dimethyl sulfoxide (DMSO), 6-n-propyl-2-thiouracil (PTU), grape-procyanidins (P) and citrus flavonoids extract (CE). The increase in micronucleated cells was higher in both physical treatments (Control?p?0.01) p?>?0.001)); however, the antioxidant substances only showed a genoprotective capacity against the damage induced by ionizing radiation (Ci?>?PTU?=?DMSO (p?0.001) >P?=?CE (p?0.001). The 50?Hz ELM-MF increased MNPCEs in mouse bone marrow, expressing a genotoxic capacity. Administration of antioxidant substances with radioprotective capacities known to act through the elimination of free radicals did not diminish the genotoxic effect induced by ELM-MF. 相似文献
19.
We investigated the combined effects of a moderate-intensity static magnetic field (SMF) and two different sympathetic agonists, an alpha(1)-adrenoceptor agonist, phenylephrine and a beta(1)-adrenoceptor agonist, dobutamine, which induced hypertension and different hemodynamics in Wistar rats. Five-week-old male rats were continuously exposed to the SMF intensity of 12 mT (B(max)) with the peak spatial gradient of 3 mT/mm for 10 weeks. A loop-shaped flexible rubber magnet was adjusted to fit snugly around the neck region of a rat (diameter-adjustable to an animal size). Sham exposure was performed using a dummy magnet. Six experimental groups of six animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip phenylephrine (1.0 microg/g) injection (PE); (4) SMF exposure with ip phenylephrine injection (SMF + PE); (5) sham exposure with ip dobutamine (4.0 microg/g) injection (DOB); (6) SMF exposure with ip dobutamine injection (SMF + DOB). Fifteen minutes after the injection of each agent, the first set of parameters, arterial blood pressure (BP) and heart rate (HR), the second set of parameters, skin blood flow (SBF) and skin blood velocity (SBV), or the third set of parameters, the number of rearing (exploratory behavior) responses and body weight was monitored. Each agent was administered three times a week for 10 weeks, and each set of parameters was monitored on different days, once a week. The dose of phenylephrine significantly increased BP and decreased HR, SBF, SBV, and the number of rearing responses in the PE group compared with those in the respective age-matched control group. The dose of dobutamine significantly increased BP and HR, increased SBF, SBV, and the number of rearing responses in the DOB group compared with those in the control group. Continuous neck exposure to the SMF alone for up to 10 weeks induced no significant changes in any of the measured cardiovascular and behavioral parameters. The SMF exposure for at least 2 weeks (1) significantly depressed phenylephrine effects on BP, SBF, SBV, and rearing activity (SMF + PE group vs. PE group); (2) significantly depressed dobutamine effects on BP, SBF, and SBV, and suppressed dobutamine-induced increase in the rearing activity (SMF + DOB group vs. DOB group). These results suggest that continuous neck exposure to 12 mT SMF for at least 2 weeks may depress or suppress sympathetic agonists-induced hypertension, hemodynamics, and behavioral changes by modulating sympathetic nerve activity. 相似文献
20.
We have previously reported that exposing the vegetative plasmodia stage of Physarum polycephalum to either individual or simultaneously applied electric and magnetic fields (45-75 Hz, 0.14-2.0 G, and 0.035-0.7 V/m) lengthens their mitotic cycle, depresses their rate of reversible shuttle streaming, and lowers their respiration rate. In this article we report the effects of simultaneously applied electromagnetic fields (60 Hz, 1.0 G, 1.0 V/m), electric fields only (60 Hz, 1.0 V/m), magnetic fields only (60 Hz, 1.0 G) on the haploid amoeba of Physarum exposed for 120-180 days. Statistically significant depressions (about 8-11%) in ATP levels were observed with all field conditions; however, respiration was significantly decreased only when amoebae were subjected to either combined fields or electric fields alone. Magnetic fields alone failed to induce a significant decrease in respiration. 相似文献