首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent analysis of cell lineages in ascidian embryos by the intracellular injection of a tracer enzyme has clearly demonstrated that muscle cells are derived not only from the B4.1-cell pair of the eight-cell stage embryo, as has hitherto been believed, but also from both the b4.2- and A4.1-cell pairs (H. Nishida and N. Satoh, 1983, Dev. Biol.99, 382–394). In order to reexamine the developmental autonomy in muscle lineage cells, the B4.1 pair was isolated from the eight-cell stage embryo. The progeny cells of the B4.1 pair, as well as those of the six other blastomeres, were then allowed to develop in isolation into partial embryos. Autonomous muscle cell differentiation not only in partial embryos originating from the B4.1 cells but also in those from the six other blastomeres was substantiated by (a) occurrence of localized histospecific muscle acetylcholinesterase and (b) development of myofibrils. These results support the validity of the recent cell lineage study and confirmed the self-differentiation potency of muscle lineage cells in ascidian embryos according to the newly verified cell lineages.  相似文献   

2.
We have recently identified several novel ATP-independent inhibitors that target the extracellular signal-regulated kinase-2 (ERK2) protein and inhibit substrate phosphorylation. To further characterize these compounds, we describe the use of C. elegans as a model organism. C. elegans is recognized as a versatile and cost effective model for use in drug development. These studies take advantage of the well characterized process of vulva development and egg laying, which requires MPK-1, the homolog to human ERK2. It is shown that treatment of C. elegans eggs or larvae prior to vulva formation with a previously identified lead compound (76) caused up to 50% reduction in the number of eggs produced from the adult worm. In contrast, compound 76 had no effect on egg laying in young adult or adult worms with fully formed vulva. The reduction in egg laying by the test compound was not due to effects on C. elegans life span, general toxicity, or non-specific stress. However, compound 76 did show selective inhibition of phosphorylation of LIN-1, a MPK-1 substrate essential for vulva precursor cell formation. Moreover, compound 76 inhibited cell fusion necessary for vulva maturation and reduced the multivulva phenotype in LET-60 (Ras) mutant worms that have constitutive activation of MPK-1. These findings support the use of C. elegans as a model organism to evaluate the selectivity and specificity of novel ERK targeted compounds.  相似文献   

3.
The postembryonic cell lineage of the somatic gonad is essentially invariant in Caenorhabditis elegans (J.E. Kimble and D. Hirsh, 1979, Develop. Biol.70, 396–417). The two exceptions to this rule of invariance involve a natural ambiguity in the ancestry of certain cells such that each of two precursor cells assumes one of two alternative fates in a given animal. In this paper, experiments are reported in which laser microsurgery is used to kill individual cells in the developing somatic gonad. Such intervention perturbs the normal environment of the remaining cells; a change observed in the expected behavior of these cells suggests that extrinsic cues may normally play a role in controlling that behavior. Several different lineage alterations have been observed after laser microsurgery in the somatic gonad. These include switches in the type of lineage followed by a given precursor cell, reversals in lineage polarity, duplications of a lineage, and alteratiions in the number of cells produced in the lineage. The only cases in which cells switch from one lineage type to another involve pairs of cells which exhibit natural ambiguity. In most cases, the interactions inferred from these changes seem to occur between neighboring somatic gonadal cells. In one case, induction of the vulva, the interaction occurs between a single somatic gonadal cell, the anchor cell, and the precursors to the vulva in a neighboring tissue, the hypodermis. The roles of intrinsic and extrinsic cues in controlling normally invariant cell lineages are discussed.  相似文献   

4.
Summary Myoglobin, albumin, haemoglobin and -globulin were fixed with osmium tetroxide and studied in the electron microscope. The molecules are represented on the electron micrographs as electron-dense, roughly circular dots. Occasionally aggregations of molecules can be observed; in some cases a separation of the molecules into subunits occurs. It is interesting to note that, according to these results, albumin and -globulin have roughly spherical shapes. Though the possibility of artefacts must be considered the electron microscopical investigation of proteins fixed with osmium tetroxide contributes to the knowledge of their structure, and also helps in the interpretation of electron micrographs of cellular structures.  相似文献   

5.
The absolute rates of synthesis of specific ribosomal proteins have been determined during growth and meiotic maturation of mouse oocytes, as well as during early embryogenesis in the mouse. These measurements were made possible by the development of a high-resolution twodimensional gel electrophoresis procedure capable of resolving basic proteins with isoelectric points between 9.1 and 10.2. Mouse ribosomal proteins were separated on such gels and observed rates of incorporation of [35S]methionine into each of 12 representative ribosomal proteins were converted into absolute rates of synthesis (femtograms or moles synthesized/hour/oocyte or embryo) by using previously determined values for the absolute rates of total protein synthesis in mouse oocytes and embryos (R. M. Schultz, M. J. LaMarca, and P. M. Wassarman, 1978,Proc. Nat. Acad. Sci. USA,75, 4160;R. M. Schultz, G. E. Letourneau, and P. M. Wassarman, 1979,Develop. Biol.,68, 341–359). Ribosomal proteins were synthesized at all stages of oogenesis and early embryogenesis examined and, while equimolar amounts of ribosomal proteins were found in ribosomes, they were always synthesized in nonequimolar amounts during development. Rates of synthesis of individual ribosomal proteins differed from each other by more than an order of magnitude in some cases. Synthesis of ribosomal proteins accounted for 1.5, 1.5, and 1.1% of total protein synthesis during growth of the oocyte, in the fully grown oocyte, and in the unfertilized egg, respectively. During meiotic maturation of mouse oocytes the absolute rate of synthesis of ribosomal proteins decreased about 40%, from 620 to 370 fg/hr/cell, as compared to a 23% decrease in the rate of total protein synthesis during the same period. On the other hand, during early embryogenesis the absolute rates of synthesis of each of the 12 ribosomal proteins examined increased substantially as compared with those of the unfertilized egg, such that at the eight-cell stage of embryogenesis synthesis of ribosomal proteins (4.17 pg/hr/embryo) accounted for about 8.1% of the total protein synthesis in the embryo. Consequently, while the absolute rate of total protein synthesis increased about 1.5-fold during development from an unfertilized mouse egg to an eight-cell compacted embryo, the absolute rate of ribosomal protein synthesis increased more than 11-fold during the same period. These results seem to reflect the differences reported for the patterns of ribosomal RNA synthesis during early development of mammalian, as compared to nonmammalian, animal species. The results are compared with those obtained using oocytes and embryos fromXenopus laevis.  相似文献   

6.
Phospholipid dispersions spontaneously form oriented lamellar multilayers when dried onto glass slides. These oriented multilayers form useful model systems for studying the molecular dynamics of lipid bilayers. In order to examine the effects of osmium tetroxide on the orientation and motion of hydrocarbon chains in lipid bilayers, lecithin multilayers containing the spin label 3-doxyl-5α-cholestane (the 4′,4′-dimethyloxazolidine-N-oxyl derivative of 5α-cholestan-3-one) were prepared and examined by electron spin resonance spectroscopy. In egg lecithin multilayers at room temperature and 81% relative humidity the osmium tetroxide causes nearly complete loss of orientation and severe reduction of molecular motion. In contrast, the high degree of order in l-α-dipalmitoyl lecithin multilayers is not affected by exposure to osmium tetroxide vapors. Experiments are also reported on macroscopically disordered lecithin preparations, and the data support the conclusions drawn from the ordered lecithin multilayers that rotational mobility of the probe is severely reduced by fixation of the lipid chains.A simple mathematical model has been developed to account for the amplitude of the high-frequency (τ < 10?8 sec) restricted y-axis anisotropic motion occurring in the bilayer plane. Since the y-axis is roughly parallel to the molecular axis of the rigid steroid spin label, this model enables quantitative comparisons of various degrees of restricted motion about the molecular axis.  相似文献   

7.
To obtain information on the amounts and major classes of RNA stored in the mouse egg and accumulated during cleavage, we determined the contents of total RNA, total poly(A), and ribosomes from the 1-cell stage to blastocyst. Using purified RNA for assay, we obtained an RNA content of 0.35 ng in the unfertilized egg, 0.24 ng in 2-cell, 0.69 ng in 8- to 16-cell, and 1.47 ng in early bastocyst (32 cells). As derived from EM morphometry, the number of ribosomes accounts for 60–70% of the total RNA content at all these stages; the marked increase in ribosomal number during cleavage is attributable entirely to new synthesis. Hybridization with [3H]poly(U) in solution yielded a poly(A) content of 0.7 pg for the unfertilized egg and 0.83 pg for the 1-cell embryo. The poly(A) content dropped sharply, to 0.26 pg per embryo, by the late 2-cell stage and increased to 0.44 pg in 8- to 16-cell embryos and 1.42 pg in early blastocysts. Hybridization in situ gave a similar pattern and also revealed a heavy labeling of embryo nuclei from the 2-cell onward but very little, if any, labeling of the pronuclei of 1-cell embryos, suggesting an absence, or low level, of poly(A)+ RNA synthesis at the 1-cell but an active synthesis at the 2-cell and later stages. These findings and other available evidence(e.g., R. Bachvarova and V. De Leon, 1980, Develop. Biol.74, 1–8) suggest that the mouse embryo inherits a large supply of maternal mRNA but that the bulk of this RNA is eliminated in the 2-cell embryo. In situ hybridization was used to study the relative concentration of poly(A) in ovarian oocytes. In growing oocytes, the cytoplasmic concentration of poly(A) remains about the same, suggesting that the accumulation of poly(A)+ RNA is proportional to oocyte growth. The poly(A) content declines about twofold between the time of completion of oocyte growth and fertilization. The germinal vesicle continues to be labeled up to the time of ovulation, raising the possibility that poly(A)+ RNA synthesis (and presumably turnover) occurs in fully grown oocytes.  相似文献   

8.
The distribution of the stage-specific embryonic antigen SSEA-3 was studied immunohistochemically on postimplantation mouse embryos. This carbohydrate antigen, identified as an epitope of a globo-series ganglioside isolated from human teratocarcinoma cells (Kannagi et al., 1983, J. Biol. Chem.258, 8934–8942) was originally detected on the zygote and mouse early cleavage-stage embryos. It disappears on the early blastocyst and reappears on the primitive endoderm of the implanting blastocyst (Shevinsky et al., 1982, Cell30, 697–705). We now show in the early egg cylinder (on the sixth day of pregnancy) SSEA-3 is present in the entire visceral endoderm but not in any other part of the conceptus. From Day 7 of pregnancy onward, SSEA-3 is restricted to the extraembryonic visceral endoderm and the visceral yolk sac cells. Therefore, SSEA-3 is a useful marker for this endodermal cell lineage in midgestational mouse embryos.  相似文献   

9.

Key message

Extended antipodal life-span.

Abstract

The female gametophyte of most flowering plants forms four cell types after cellularization, namely synergid cell, egg cell, central cell and antipodal cell. Of these, only the antipodal cells have no established functions, and it has been proposed that in many plants including Arabidopsis, the antipodal cells undergo programmed cell death during embryo sac maturation and prior to fertilization. Here, we examined the expression of female gametophyte-specific fluorescent reporters in mature embryo sacs of Arabidopsis, and in developing seeds shortly after fertilization. We observed expression of the fluorescence from the reporter genes in the three antipodal cells in the mature stage embryo sac, and continuing through the early syncytial endosperm stages. These observations suggest that rather than undergoing programmed cell death and degenerating at the mature stage of female gametophyte as previously supposed, the antipodal cells in Arabidopsis persist beyond fertilization, even when the other cell types are no longer present. The results support the concept that the Arabidopsis female gametophyte at maturity should be considered to be composed of seven cells and four cell types, rather than the previously prevailing view of four cells and three cell types.  相似文献   

10.
Summary A technique is described for the localization in the electron microscope of periodate-reactive mucosubstances and polysaccharides containing vic-glycol groups. In this technique the sugar residues are oxidized by periodic acid and the resulting aldehydes condensed with pentafluorophenylhydrazine under specified conditions. Further increase in specific electron density is achieved by treating the hydrazone end-product with ammonium sulphide followed by osmium tetroxide to form an osmium black.The technique has been applied to liver and small intestine cells in which glycogen, sialomucins and sulphated mucosubstances reacted especially strongly. A marked positive reaction has also been obtained from the interstitial cell matrix and from the Golgi apparatus and multivesicular bodies of the intestinal epithelial cells.The reaction can be prevented by the omission of the periodate oxidation and, if due to glycogen, by prior treatment with diastase.  相似文献   

11.

Key message

We identified three physical positions associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. We also confirmed their genetic effects on the embryo yield.

Abstract

Isolated microspore culture is well utilized for the production of haploid or doubled-haploid plants in Brassica crops. Brassica rapa cv. ‘Ho Mei’ is one of the most excellent cultivars in embryo yield of microspore culture. To identify the loci associated with microspore embryogenesis, segregation analysis of 154 DNA markers anchored to B. rapa chromosomes (A01–A10) was performed using a population of microspore-derived embryos obtained from an F1 hybrid between ‘CR-Seiga’, a low yield cultivar in microspore-derived embryos, and ‘Ho Mei’. Three regions showing significant segregation distortion with increasing ‘Ho Mei’ alleles were detected on A05, A08 and A09, although these regions showed the expected Mendelian segregation ratio in an F2 population. The additive effect of alleles in these regions on embryo yield was confirmed in a BC3F1 population. One region on A08 containing Br071-5c had a higher effect than the other regions. Polymorphism of nucleotide sequences around the Br071-5c locus was investigated to find the gene possibly responsible for efficient embryogenesis from microspores.
  相似文献   

12.
To explore the nature of cell lineage modifications that have occurred during evolution, the gonadal cell lineages of the nematode Panagrellus redivivus have been determined and compared to the known gonadal lineages of Caenorhabditis elegans (J. Kimble and D. Hirsh, 1979, Develop. Biol.70, 396–417). Essentially invariant lineages generate the 143 somatic cells of the male gonad and at least 326 somatic cells of the female gonad of P. redivivus. The basic program of gonadogenesis is strikingly similar among both sexes of both species. For example, the early division patterns of the somatic gonad precursors Z1 and Z4 are almost identical. Later division patterns are more divergent and, in a few cases, generate structures that are species specific. In general, similar cell types are produced after similar patterns of cell divisions. Differences among the Z1 and Z4 cell lineages appear to reflect phylogenetic modifications of a common developmental program. The nature of these differences suggests that the evolution of cell lineages involves four distinct classes of alterations: switches in the fate of a cell to that normally associated with another cell; reversals in the polarity of the lineage generated by a blast cell; alterations in the number of rounds of cell division; and an “altered segregation” of developmental potential, so that a potential normally associated with one cell instead becomes associated with its sister. A number of cell deaths occur during gonadogenesis in P. redivivus. The death of Z4.pp, a cell that controls the development of the posterior ovary in C. elegans, probably prevents the development of a posterior ovary in P. redivivus and hence is responsible for the gross difference in the morphologies of the gonads of the P. redivivus female and the C. elegans hermaphrodite. As exemplified by the death of Z4.pp, an alteration in the fate of a “regulatory cell” could facilitate rapid and/or discontinuous evolutionary change.  相似文献   

13.
Summary Lungs of neotenic larvae of Ambystoma mexicanum were prepared for maintaining the air-tissue boundary during aldehyde fixation. Four methods of postfixation were applied: 1) osmium tetroxide followed by en-bloc staining with uranyl acetate and phosphotungstic acid, 2) ruthenium redosmium tetroxide, 3) osmium tetroxide-ferrocyanide, and 4) tannic acidosmium tetroxide.Three types of cells line the inner surface of the axolotl lung: 1) pneumocytes, covering the capillaries with flat cellular extensions and containing two types of granules: the osmiophilic lamellar bodies, precursors of extracellular membranous material, and apical granules of unknown significance; 2) ciliated cells, also containing osmiophilic lamellar bodies; and 3) goblet cells filled with secretory granules as well as osmiophilic bodies.The extracellular material forms membranous whorls as well as tubular myelin figures, consisting of membranous backbones combined with an intensely stained substance. This material strikingly resembles the surfactant of amphibian lungs.  相似文献   

14.
15.
16.

Background

The proliferating cell nuclear antigen (PCNA or PCN-1 in C. elegans), an essential processivity factor for DNA polymerase δ, has been widely used as a marker of S-phase. In C. elegans early embryos, PCN-1 accumulation is cyclic, localizing to the nucleus during S-phase and the cytoplasm during the rest of the cell cycle. The C. elegans larval and adult germline is an important model systems for studying cell cycle regulation, and it was observed that the cell cycle regulator cyclin E (CYE-1 in C. elegans) displays a non-cyclic, continuous accumulation pattern in this tissue. The accumulation pattern of PCN-1 has not been well defined in the larval and adult germline, and the objective of this study was to determine if the accumulation pattern is cyclic, as in other cells and organisms, or continuous, similar to cyclin E.

Results

To study the larval and adult germline accumulation of PCN-1 expressed from its native locus, we used CRISPR/Cas9 technology to engineer a novel allele of pcn-1 that encodes an epitope-tagged protein. S-phase nuclei were labeled using EdU nucleotide incorporation, and FLAG::PCN-1 was detected by antibody staining. All progenitor zone nuclei, including those that were not in S-phase (as they were negative for EdU staining) showed PCN-1 accumulation, indicating that PCN-1 accumulated during all cell cycle phases in the germline progenitor zone. The same result was observed with a GFP::PCN-1 fusion protein expressed from a transgene. pcn-1 loss-of-function mutations were analyzed, and pcn-1 was necessary for robust fertility and embryonic development.

Conclusions

In the C. elegans early embryo as well as other organisms, PCN-1 accumulates in nuclei only during S-phase. By contrast, in the progenitor zone of the germline of C. elegans, PCN-1 accumulated in nuclei during all cell cycle stages. This pattern is similar to accumulation pattern of cyclin E. These observations support the model that mitotic cell cycle regulation in the germline stem and progenitor cells is distinct from somatic cells, as it does not heavily rely on cyclic accumulation of classic cell cycle proteins.
  相似文献   

17.
The nematode Caenorhabditis elegans (C. elegans) is an ideal model organism to study the cell fate specification mechanisms during embryogenesis. It is generally believed that cell fate specification in C. elegans is mainly mediated by lineage-based mechanisms, where the specification paths are driven forward by a succession of asymmetric cell divisions. However, little is known about how each binary decision is made by gene regulatory programs. In this study, we endeavor to obtain a global understanding of cell lineage/fate divergence processes during the early embryogenesis of C. elegans. We reanalyzed the EPIC data set, which traced the expression level of reporter genes at single-cell resolution on a nearly continuous time scale up to the 350-cell stage in C. elegans embryos. We examined the expression patterns for a total of 131 genes from 287 embryos with high quality image recordings, among which 86 genes have replicate embryos. Our results reveal that during early embryogenesis, divergence between sister lineages could be largely explained by a few genes. We predicted genes driving lineage divergence and explored their expression patterns in sister lineages. Moreover, we found that divisions leading to fate divergence are associated with a large number of genes being differentially expressed between sister lineages. Interestingly, we found that the developmental paths of lineages could be differentiated by a small set of genes. Therefore, our results support the notion that the cell fate patterns in C. elegans are achieved through stepwise binary decisions punctuated by cell divisions. Our predicted genes driving lineage divergence provide good starting points for future detailed characterization of their roles in the embryogenesis in this important model organism.  相似文献   

18.
Summary Developing tracheary elements in suspension cultures ofZinnia elegans fluoresce intensely relative to non-differentiating cells when stained with chlorotetracycline (CTC), a fluorescent chelate probe for membrane associated calcium. This suggests that a change in calcium uptake or subcellular distribution accompanies the onset of tracheary element differentiation. A few cells in early differentiating cultures were brightly fluorescent, but did not have visible cell wall thickenings, suggesting that a rise in sequestered calcium may precede visible differentiation. Diffuse CTC fluorescence in early differentiation most likely results from sequestration of calcium in the endoplasmic reticulum. Late in differentiation, CTC fluorescence becomes punctate in appearance, probably due to loss of plasma membrane integrity occurring at the onset of autolysis.Zinnia suspension culture cells were found to be very sensitive to CTC and low concentrations (10 M) were used to assure accurate localization of membrane-associated calcium in healthy cells.Abbreviations CTC chlorotetracycline - DIC differential interference contrast - DiOC6 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - EGTA ethylene glycol bis-(amino-ethyl ether) N,N,N1N1-tetraacetic acid - NPN n-phenylnaphthylamine - OsFeCN osmium tetroxide and potassium ferricyanide - TE tracheary element - TEM transmission electron microscopy  相似文献   

19.
Muscle colony-forming (MCF) cells from vertebrate limb buds show stage-specific differences in media requirements and clonal morphology (N. K. White, P. H. Bonner, D. R. Nelson, and S. D. Hauschka, 1975, Develop. Biol.44, 346–361). The cell lineage relationship, if any, between the different myogenic cell types is unknown. To investigate whether early MCF cells convert or mature into the late type, MCF cells from stage 23–33 chick embryo leg buds were grown in vitro and sequentially subcloned. Results indicate that colony type, no matter what the stage of origin, is heritable in vitro through at least five passages (45 in vitro doublings) or until the subclones reach proliferative senescence. These results are discussed with respect to various alternatives for the generation of MCF cell diversity during limb development.  相似文献   

20.
Summary This paper deals with the application of the osmium tetroxide fixation followed by p-phenylenediamine treatment to salivary gland cells from Chironomus larvae. After this procedure, cytoplasm, nucleoli and Balbiani rings show a high degree of staining both in light and electron microscopy, while chromatin remains unstained. Ethanol fixation followed by osmium tetroxide/p-phenylenediamine does not modify the above mentioned staining pattern. Under these conditions, extractive procedures for lipids do not affect the osmiophilia of nucleoli and Balbiani rings, while RNase or trichloroacetic acid treatment decreaes the staining degree of these structures. In osmium tetroxide/p-phenylenediamine treated salivary glands, the highest contrast within nuclei is seen to occur in the pars granulosa from normal or segregated nucleoli, as well as in Balbiani ring granules, which appear either as hollow granules or with a bipartite or horseshoe-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号