共查询到20条相似文献,搜索用时 11 毫秒
1.
Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome 总被引:16,自引:0,他引:16
Strickland E Hakala K Thomas PJ DeMartino GN 《The Journal of biological chemistry》2000,275(8):5565-5572
The 26 S proteasome is a large protease complex that catalyzes the degradation of both native and misfolded proteins. These proteins are known to interact with PA700, the regulatory subcomplex of the 26 S proteasome, via a covalently attached polyubiquitin chain. Here we provide evidence for an additional ubiquitin-independent mode of substrate recognition by PA700. PA700 prevents the aggregation of three incompletely folded, nonubiquitinated substrates: the DeltaF-508 mutant form of cystic fibrosis transmembrane regulator, nucleotide binding domain 1, insulin B chain, and citrate synthase. This function does not require ATP hydrolysis. The stoichiometry required for this function, the effect of PA700 on the lag phase of aggregation, and the temporal specificity of PA700 in this process all indicate that PA700 interacts with a subpopulation of non-native conformations that is either particularly aggregation-prone or nucleates misassociation reactions. The inhibition of off-pathway self-association reactions is also reflected in the ability of PA700 to promote refolding of citrate synthase. These results provide evidence that, in addition to binding polyubiquitin chains, PA700 contains a site(s) that recognizes and interacts with misfolded or partially denatured polypeptides. This feature supplies an additional level of substrate specificity to the 26 S proteasome and a means by which substrates are maintained in a soluble state until refolding or degradation is complete. 相似文献
2.
Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils. 相似文献
3.
Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome 总被引:3,自引:0,他引:3
Liu CW Millen L Roman TB Xiong H Gilbert HF Noiva R DeMartino GN Thomas PJ 《The Journal of biological chemistry》2002,277(30):26815-26820
PA700, the 19 S regulatory complex of the 26 S proteasome, plays a central role in the recognition and efficient degradation of misfolded proteins. PA700 promotes degradation by recruiting proteasomal substrates utilizing polyubiquitin chains and chaperone-like binding activities and by opening the access to the core of the 20 S proteasome to promote degradation. Here we provide evidence that PA700 in addition to binding misfolded protein substrates also acts to remodel their conformation prior to proteolysis. Scrambled RNase A (scRNase A), a misfolded protein, only slowly refolds spontaneously into an active form because of the rate-limiting unfolding of misfolded disulfide isomers. Notably, PA700 accelerates the rate of reactivation of scRNase A, consistent with its ability to increase the exposure of these disulfide bonds to the solvent. In this regard, PA700 also exposes otherwise buried sites to digestion by exogenous chymotrypsin in a polyubiquitinated enzymatically active substrate, pentaubiquitinated dihydrofolate reductase, Ub(5)DHFR. The dihydrofolate reductase ligand methotrexate counters the ability of PA700 to promote digestion by chymotrypsin. Together, these results indicate that in addition to increasing substrate affinity and opening the access channel to the catalytic sites, PA700 activates proteasomal degradation by remodeling the conformation of protein substrates. 相似文献
4.
The proteasome is the major cytosolic protease, composed of a 20S catalytic core that associates with either the 19S (PA700) activator or the 11S (PA28) regulator complex. The 19S complex is thought to promote protein substrate unfolding and subsequent degradation, but precise functions for the individual subunits remain undefined. The chromatin structure and regulation of the S3 (P91A) subunit of the 19S activator was examined as a novel approach towards understanding its role in the complex. DNase I hypersensitivity (HS) analysis of S3 chromatin revealed a ubiquitous DNase I HS site mapping to the promoter region. Examination of the S3 chromatin structure in thymocytes, a dynamic population that undergo substantial proliferation, apoptosis, and differentiation, revealed an additional DNase I HS site mapping to the sixth intron of the genomic sequence. This second site was demonstrated to be associated with CD4(+)CD8(+) double-positive (DP) but not CD4(+) single-positive (SP) thymoma cell lines, and may correlate with a downregulation of S3 message. When a DP thymic cell line was induced to differentiate through retroviral transduction with Notch-1, the second DNase I HS site was dramatically diminished, illustrating that S3 chromatin is developmentally regulated during thymocyte positive selection. 相似文献
5.
Degradation of oxidized proteins by the 20S proteasome 总被引:27,自引:0,他引:27
Davies KJ 《Biochimie》2001,83(3-4):301-310
Oxidatively modified proteins are continuously produced in cells by reactive oxygen and nitrogen species generated as a consequence of aerobic metabolism. During periods of oxidative stress, protein oxidation is significantly increased and may become a threat to cell survival. In eucaryotic cells the proteasome has been shown (by purification of enzymatic activity, by immunoprecipitation, and by antisense oligonucleotide studies) to selectively recognize and degrade mildly oxidized proteins in the cytosol, nucleus, and endoplasmic reticulum, thus minimizing their cytotoxicity. From in vitro studies it is evident that the 20S proteasome complex actively recognizes and degrades oxidized proteins, but the 26S proteasome, even in the presence of ATP and a reconstituted functional ubiquitinylating system, is not very effective. Furthermore, relatively mild oxidative stress rapidly (but reversibly) inactivates both the ubiquitin activating/conjugating system and 26S proteasome activity in intact cells, but does not affect 20S proteasome activity. Since mild oxidative stress actually increases proteasome-dependent proteolysis (of oxidized protein substrates) the 20S 'core' proteasome complex would appear to be responsible. Finally, new experiments indicate that conditional mutational inactivation of the E1 ubiquitin-activating enzyme does not affect the degradation of oxidized proteins, further strengthening the hypothesis that oxidatively modified proteins are degraded in an ATP-independent, and ubiquitin-independent, manner by the 20S proteasome. More severe oxidative stress causes extensive protein oxidation, directly generating protein fragments, and cross-linked and aggregated proteins, that become progressively resistant to proteolytic digestion. In fact these aggregated, cross-linked, oxidized proteins actually bind to the 20S proteasome and act as irreversible inhibitors. It is proposed that aging, and various degenerative diseases, involve increased oxidative stress (largely from damaged and electron 'leaky' mitochondria), and elevated levels of protein oxidation, cross-linking, and aggregation. Since these products of severe oxidative stress inhibit the 20S proteasome, they cause a vicious cycle of progressively worsening accumulation of cytotoxic protein oxidation products. 相似文献
6.
7.
The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome 总被引:1,自引:0,他引:1
Hsp90 has a diverse array of cellular roles including protein folding, stress response and signal transduction. Herein we report a novel function for Hsp90 in the ATP-dependent assembly of the 26S proteasome. Functional loss of Hsp90 using a temperature-sensitive mutant in yeast caused dissociation of the 26S proteasome. Conversely, these dissociated constituents reassembled in Hsp90-dependent fashion both in vivo and in vitro; the process required ATP-hydrolysis and was suppressed by the Hsp90 inhibitor geldanamycin. We also found genetic interactions between Hsp90 and several proteasomal Rpn (Regulatory particle non-ATPase subunit) genes, emphasizing the importance of Hsp90 to the integrity of the 26S proteasome. Our results indicate that Hsp90 interacts with the 26S proteasome and plays a principal role in the assembly and maintenance of the 26S proteasome. 相似文献
8.
Ortega J Heymann JB Kajava AV Ustrell V Rechsteiner M Steven AC 《Journal of molecular biology》2005,346(5):1221-1227
Proteasomes consist of a proteolytic core called the 20 S particle and ancillary factors that regulate its activity in various ways. PA200 has been identified as a large (200 kDa) nuclear protein that stimulates proteasomal hydrolysis of peptides. To characterize its interaction with the 20 S core, we have visualized PA200-20 S complexes by electron microscopy. Monomers of PA200 bind to one or both ends of the 20 S core. Reconstructed in three dimensions to 23 A resolution from cryo-electron micrographs of the singly bound complex, PA200 has an asymmetric dome-like structure with major and minor lobes. Taking into account previous bioinformatic analysis, it is likely to represent an irregular folding of an alpha-helical solenoid composed of HEAT-like repeats. PA200 makes contact with all alpha-subunits except alpha7, and this interaction induces an opening of the axial channel through the alpha-ring. Thus, the activation mechanism of PA200 is expressed via its allosteric effects on the 20 S core particle, perhaps facilitating release of digestion products or the entrance of substrates. 相似文献
9.
PA700, the 19 S regulatory subcomplex of the 26 S proteasome, contains a heterohexameric ring of AAA subunits (Rpt1 to -6) that forms the binding interface with a heteroheptameric ring of α subunits (α1 to -7) of the 20 S proteasome. Binding of these subcomplexes is mediated by interactions of C termini of certain Rpt subunits with cognate binding sites on the 20 S proteasome. Binding of two Rpt subunits (Rpt2 and Rpt5) depends on their last three residues, which share an HbYX motif (where Hb is a hydrophobic amino acid) and open substrate access gates in the center of the α ring. The relative roles of other Rpt subunits for proteasome binding and activation remain poorly understood. Here we demonstrate that the C-terminal HbYX motif of Rpt3 binds to the 20 S proteasome but does not promote proteasome gating. Binding requires the last three residues and occurs at a dedicated site on the proteasome. A C-terminal peptide of Rpt3 blocked ATP-dependent in vitro assembly of 26 S proteasome from PA700 and 20 S proteasome. In HEK293 cells, wild-type Rpt3, but not Rpt3 lacking the HbYX motif was incorporated into 26 S proteasome. These results indicate that the C terminus of Rpt3 was required for cellular assembly of this subunit into 26 S proteasome. Mutant Rpt3 was assembled into intact PA700. This result indicates that intact PA700 can be assembled independently of association with 20 S proteasome and thus may be a direct precursor for 26 S proteasome assembly under normal conditions. These results provide new insights to the non-equivalent roles of Rpt subunits in 26 S proteasome function and identify specific roles for Rpt3. 相似文献
10.
Tani F Shirai N Nakanishi Y Kitabatake N 《Bioscience, biotechnology, and biochemistry》2003,67(5):1030-1038
Aggregation occurs through hydrophobic interactions when a polypeptide chain refolds in non-native states or when genetic variants of biologically active proteins assume inappropriate conformations, as observed in the case of dysfunctional serpins. Here, using the molecular chaperone BiP from bovine liver microsomes, we characterized the hydrophobic nature of the peptide segment which is considered to be a site required for aggregation among a non-inhibitory serpin ovalbumin in a heat-denatured state. Screening of the peptide scan for binding of BiP showed that BiP-binding sites are mostly buried in the folded ovalbumin. When ovalbumin was heat-denatured, the denatured protein was recognized by the antibody that reacts with the hydrophobic surface of the amino-terminal segment of ovalbumin. This antibody significantly suppressed the binding of BiP to denatured ovalbumin. BiP also bound the immobilized peptide in an ATP-dependent manner and the peptide stimulated the ATPase activity of BiP with a Km of 165 microM and a Vmax of 0.4 nmol/min per milligram. Measurement of surface plasmon resonance showed that the peptide had a Kd of 0.52 microM by BiP, lower than that for RCMLA (Kd = 1.1 microM) and even lower than that of the peptide P10K, PLSRTLSVAAKK, (Kd = 21 microM). These results demonstrate that the aggregation-prone site on heat-denatured ovalbumin has almost the same hydrophobic nature of interacting with the molecular chaperone BiP as the conventionally known peptides that bind to the Escherichia coli chaperone DnaK. 相似文献
11.
The activity of the proteasome, the major non-lysosomal proteinase in eukaryotes, is stimulated by two activator complexes, PA700 and PA28. PA700-20 S-PA700 proteasome complexes, generally designated as 26 S proteasomes, degrade proteins, whereas complexes of the type PA28-20 S-PA28 degrade only peptides. We report, for the first time, the in vitro reconstitution of previously identified hybrid proteasomes (PA700-20 S-PA28) from purified PA700-20 S proteasome complexes and PA28 activator. In electron micrographs, the hybrid appears as a corkscrew-shaped particle with a PA700 and a PA28 activator each bound to a terminal alpha-disk of the 20 S core proteasome. The multiple peptidase activities of hybrid proteasomes are not different from those of PA28-20 S-PA28 or PA700-20 S-PA700 complexes. 相似文献
12.
Fedorova OA Moiseeva TN Nikiforov AA Tsimokha AS Livinskaya VA Hodson M Bottrill A Evteeva IN Ermolayeva JB Kuznetzova IM Turoverov KK Eperon I Barlev NA 《Biochemical and biophysical research communications》2011,416(3-4):258-265
The 26S proteasome is a large multi-subunit protein complex that exerts specific degradation of proteins in the cell. The 26S proteasome consists of the 20S proteolytic particle and the 19S regulator. In order to be targeted for proteasomal degradation most of the proteins must undergo the post-translational modification of poly-ubiquitination. However, a number of proteins can also be degraded by the proteasome via a ubiquitin-independent pathway. Such degradation is exercised largely through the binding of substrate proteins to the PSMA3 (alpha 7) subunit of the 20S complex. However, a systematic analysis of proteins interacting with PSMA3 has not yet been carried out. In this report, we describe the identification of proteins associated with PSMA3 both in the cytoplasm and nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and tandem mass-spectrometry revealed a large number of PSMA3-bound proteins that are involved in various aspects of mRNA metabolism, including splicing. In vitro biochemical studies confirmed the interactions between PSMA3 and splicing factors. Moreover, we show that 20S proteasome is involved in the regulation of splicing in vitro of SMN2 (survival motor neuron 2) gene, whose product controls apoptosis of neurons. 相似文献
13.
Global organization and function of mammalian cytosolic proteasome pools: Implications for PA28 and 19S regulatory complexes 下载免费PDF全文
Shibatani T Carlson EJ Larabee F McCormack AL Früh K Skach WR 《Molecular biology of the cell》2006,17(12):4962-4971
Proteolytic activity of the 20S proteasome is regulated by activators that govern substrate movement into and out of the catalytic chamber. However, the physiological relationship between activators, and hence the relative role of different proteasome species, remains poorly understood. To address this problem, we characterized the total pool of cytosolic proteasomes in intact and functional form using a single-step method that bypasses the need for antibodies, proteasome modification, or column purification. Two-dimensional Blue Native(BN)/SDS-PAGE and tandem mass spectrometry simultaneously identified six native proteasome populations in untreated cytosol: 20S, singly and doubly PA28-capped, singly 19S-capped, hybrid, and doubly 19S-capped proteasomes. All proteasome species were highly dynamic as evidenced by recruitment and exchange of regulatory caps. In particular, proteasome inhibition with MG132 markedly stimulated PA28 binding to exposed 20S alpha-subunits and generated doubly PA28-capped and hybrid proteasomes. PA28 recruitment virtually eliminated free 20S particles and was blocked by ATP depletion. Moreover, inhibited proteasomes remained stably associated with distinct cohorts of partially degraded fragments derived from cytosolic and ER substrates. These data establish a versatile platform for analyzing substrate-specific proteasome function and indicate that PA28 and 19S activators cooperatively regulate global protein turnover while functioning at different stages of the degradation cycle. 相似文献
14.
The 20S proteasome of Schistosoma mansoni: a proteomic analysis 总被引:1,自引:0,他引:1
Castro-Borges W Cartwright J Ashton PD Braschi S Guerra Sa R Rodrigues V Wilson RA Curwen RS 《Proteomics》2007,7(7):1065-1075
15.
Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). 总被引:11,自引:0,他引:11
A protein that greatly stimulates the multiple peptidase activities of the 20 S proteasome (also known as macropain, the multicatalytic protease complex, and 20 S protease) has been purified from bovine red blood cells and from bovine heart. The activator protein was a single polypeptide with an apparent molecular weight of 28,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and had a native molecular weight of approximately 180,000. This protein, which we have termed PA28, regulated all three of the putatively distinct peptidase activities displayed by each of two functionally different forms of the proteasome. This regulation usually included both an increase in the maximal reaction velocity and a decrease in the concentration of substrate required for half-maximal velocity and indicated that PA28 acted as a positive allosteric effector of the proteasome. PA28 failed, however, to stimulate the hydrolysis of large protein substrates such as casein and lysozyme. These results suggested that the hydrolysis of protein substrates occurred at a site or sites distinct from those that hydrolyzed small peptides and that the regulation of the two processes could be uncoupled. Evidence for direct binding of PA28 to the proteasome was obtained by glycerol density gradient centrifugation. PA28 may play an important regulatory role in intracellular proteolytic pathways mediated by the proteasome. 相似文献
16.
Gillette TG Kumar B Thompson D Slaughter CA DeMartino GN 《The Journal of biological chemistry》2008,283(46):31813-31822
The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome. 相似文献
17.
Alteration of 20S proteasome-subtypes and proteasome activator PA28 in skeletal muscle of rat after induction of diabetes mellitus 总被引:2,自引:0,他引:2
Merforth S Kuehn L Osmers A Dahlmann B 《The international journal of biochemistry & cell biology》2003,35(5):740-748
Insulin-dependent diabetes mellitus is known to go along with enhanced muscle protein breakdown. Since evidence has been presented that the ubiquitin-proteasome system is significantly involved in muscle wasting under this condition, we have investigated, whether this biological role goes along with alterations of the proteasome system in skeletal muscle of streptozotocin-diabetic rats. Previously, we have found a drop of overall proteasome activity in muscle extracts of rats after induction of diabetes but no change in total amount of 20S proteasome was detected. In the present investigation under the same diabetic conditions we have measured a significant decrease in the amount of proteasome activator PA28, a finding that explains the loss of total proteasome activity. Since increased mRNA levels of proteasome subunits have been measured in muscle tissue of rats after induction of diabetes, we have isolated and purified 20S proteasomes from muscle tissue of control and 6 days diabetic rats. The specific chymotrypsin-like, trypsin-like, and peptidylglutamylpeptide-hydrolysing activities of proteasomes from diabetic and control rats were found to be not significantly different. Therefore, we have fractionated 20S proteasomes into their subtypes and detected that induction of diabetes mellitus effects a redistribution of subtypes of all three proteasome populations but only the increase in subtype V (immuno-subtype) was statistically significant. This altered subtype pattern obviously meets the requirements to the system under wasting conditions. Since this process goes along with de novo biogenesis of 20S proteasomes, it most likely explains the phenomenon of elevated mRNA concentrations of proteasome subunits after induction of diabetes mellitus. 相似文献
18.
Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome 总被引:5,自引:0,他引:5
Alberti S Demand J Esser C Emmerich N Schild H Hohfeld J 《The Journal of biological chemistry》2002,277(48):45920-45927
BAG-1 is a ubiquitin domain protein that links the molecular chaperones Hsc70 and Hsp70 to the proteasome. During proteasomal sorting BAG-1 can cooperate with another co-chaperone, the carboxyl terminus of Hsc70-interacting protein CHIP. CHIP was recently identified as a Hsp70- and Hsp90-associated ubiquitin ligase that labels chaperone-presented proteins with the degradation marker ubiquitin. Here we show that BAG-1 itself is a substrate of the CHIP ubiquitin ligase in vitro and in vivo. CHIP mediates attachment of ubiquitin moieties to BAG-1 in conjunction with ubiquitin-conjugating enzymes of the Ubc4/5 family. Ubiquitylation of BAG-1 is strongly stimulated when a ternary Hsp70.BAG-1.CHIP complex is formed. Complex formation results in the attachment of an atypical polyubiquitin chain to BAG-1, in which the individual ubiquitin moieties are linked through lysine 11. The noncanonical polyubiquitin chain does not induce the degradation of BAG-1, but it stimulates a degradation-independent association of the co-chaperone with the proteasome. Remarkably, this stimulating activity depends on the simultaneous presentation of the integrated ubiquitin-like domain of BAG-1. Our data thus reveal a cooperative recognition of sorting signals at the proteolytic complex. Attachment of polyubiquitin chains to delivery factors may represent a novel mechanism to regulate protein sorting to the proteasome. 相似文献
19.
The proteasome, a multisubunit, multicatalytic proteinase complex, is attracting growing attention as the main intracellular, extralysosomal, proteolytic system involved in ubiquitin-(Ub) dependent and Ub-independent intracellular proteolysis. Its involvement in the mitotic cycle, and control of the half-life of most cellular proteins, functions absolutely necessary for cell growth and viability, make it an attractive target for researchers of intracellular metabolism and an important target for pharmacological intervention. The proteasome belongs to a new mechanistic class of proteases, the N-terminal nucleophile hydrolases, where the N-terminal threonine residue functions as the nucleophile. This minireview focuses on the three classical catalytic activities of the proteasome, designated chymotrypsin-like, trypsin-like, and peptidyl-glutamyl-peptide hydrolyzing in eukaryotes and also the activities of the more simple Archaebacteria and Eubacteria proteasomes. Other catalytic activities of the proteasome and their possible origin are also examined. The specificity of the catalytic components toward synthetic substrates, natural peptides, and proteins and their relationship to the catalytic centers are reviewed. Some unanswered questions and future research directions are suggested. 相似文献
20.
The proteasome plays a central role in maintaining cellular homeostasis, in controlling the cell cycle, in removing misfolded proteins that can be toxic, and in regulating the immune system. It is also an important target for novel anticancer drugs, such as bortezomib, a potent inhibitor that has been used successfully in the treatment of multiple myeloma. Here, we show that the antimalaria drug chloroquine inhibits proteasome function in eukaryotic cell extracts and in preparations of purified 20S archaeal proteasome from Thermoplasma acidophilium. Methyl-TROSY-based NMR spectroscopy experiments conducted with the 670 kDa 20S proteasome localize chloroquine binding to regions between the alpha and beta subunits of the alpha-beta-beta-alpha barrel-like structure, approximately 20 A from the proteolytic active sites in this 7-fold symmetric molecule. Complementary amide TROSY experiments that provide further probes of proteasome-inhibitor interactions were performed on a novel 180 kDa single-ring construct containing only alpha subunits, the proper assembly of which was confirmed by electron microscopy. In contrast to the chloroquine-proteasome interaction described here, all previously reported inhibitors of the proteasome, including MG132, bind the catalytic region directly. Consistent with the NMR chemical shift perturbation data reported here that place chloroquine binding distal from sites of proteolysis, we show that MG132 and chloroquine can bind the proteasome simultaneously, further establishing that they exploit two completely separate binding pockets. Our data thus establish a novel class of proteasome inhibitor that functions via a mechanism distinct from binding to active sites. 相似文献