首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is a member of a sub-family of phosphatidylinositol (PI) 3-kinases termed PIK-related kinases. A distinguishing feature of this sub-family is the presence of a conserved C-terminal region downstream of a PI 3-kinase domain. Mutants defective in DNA-PKcs are sensitive to ionising radiation and are unable to carry out V(D)J recombination. Irs-20 is a DNA-PKcs-defective cell line with milder gamma-ray sensitivity than two previously characterised mutants, V-3 and mouse scid cells. Here we show that the DNA-PKcs protein from irs-20 cells can bind to DNA but is unable to function as a protein kinase. To verify the defect in irs-20 cells and provide insight into the function and expression of DNA-PKcs in double-strand break repair and V(D)J recombination we introduced YACs encoding human and mouse DNA-PKcs into defective mutants and achieved complementation of the defective phenotypes. Furthermore, in irs-20 we identified a mutation in DNA-PKcs that causes substitution of a lysine for a glutamic acid in the fourth residue from the C-terminus. This represents a strong candidate for the inactivating mutation and provides supportive evidence that the extreme C-terminal motif is important for protein kinase activity.  相似文献   

2.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs.  相似文献   

3.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is the key functional element in the DNA-PK complex that drives nonhomologous end joining (NHEJ), the predominant DNA double-strand break (DSB) repair mechanism operating to rejoin such breaks in mammalian cells after exposure to ionizing radiation. It has been reported that DNA-PKcs phosphorylation and kinase activity are critical determinants of radiosensitivity, based on responses reported after irradiation of asynchronously dividing populations of various mutant cell lines. In the present study, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G(1) cells to (137)Cs γ rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites within the T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusters was found to be critical for induction of radiosensitivity.  相似文献   

4.
Ding Q  Bramble L  Yuzbasiyan-Gurkan V  Bell T  Meek K 《Gene》2002,283(1-2):263-269
Previously, spontaneous genetic immunodeficiencies in mice, Arabian foals, and recently in Jack Russell terriers have been ascribed to defects in DNA-PKcs (catalytic subunit of the DNA dependent protein kinase) expression. In severe combined immunodeficiency (SCID) foals, a 5 bp deletion at codon 9480 results in a frameshift and a 967 amino acid deletion from the C terminus (including the entire PI3 kinase domain) and an unstable mutant protein. In SCID mice, a single base pair mutation results in a premature stop codon and deletion of 83 amino acids; as in SCID foals, the mutant protein is unstable. Here, we define the mutation within the canine DNA-PKcs gene that results in SCID. In this case, a point mutation results in a stop codon at nucleotide 10,828 and premature termination at a position 517 amino acids before the normal C terminus resulting in a functionally null allele. Thus, this is the third documentation of a spontaneous germline mutation in the C terminus of DNA-PKcs. Emerging data implicate DNA repair factors as potential tumor suppressors. Here, we have ascertained the carrier frequency of the defective DNA-PKcs genes in Arabian horses and in Jack Russell terriers. Our data indicate (in good agreement with a previous report) that the carrier frequency of the equine SCID allele is approximately 8%; in contrast, the carrier frequency of the canine SCID allele is less than 1.1%. We also assessed the frequency of the equine SCID allele in a series of 295 tumors from Arabian horses. We find a statistically significant correlation between the development of a virally induced tumor (sarcoid) and heterozygosity for the equine SCID allele. These data provide further support for an emerging consensus: that DNA-PK may normally act as a tumor suppressor through its caretaker role in maintaining chromosomal stability.  相似文献   

5.
NTT (N-terminal tags) on the catalytic (p110) sub-unit of PI 3-K (phosphoinositol 3-kinase) have previously been shown to increase cell signalling and oncogenic transformation. Here we test the impact of an NT (N-terminal) His-tag on in vitro lipid and protein kinase activity of all class-1 PI 3-K isoforms and two representative oncogenic mutant forms (E545K and H1047R), in order to elucidate the mechanisms behind this elevated signalling and transformation observed in vivo. Our results show that an NT His-tag has no impact on lipid kinase activity as measured by enzyme titration, kinetics and inhibitor susceptibility. Conversely, the NT His-tag did result in a differential effect on protein kinase activity, further potentiating the elevated protein kinase activity of both the helical domain and catalytic domain oncogenic mutants with relation to p110 phosphorylation. All other isoforms also showed elevated p110 phosphorylation (although not statistically significant). We conclude that the previously reported increase in cell signalling and oncogenic-like transformation in response to p110 NTT is not mediated via an increase in the lipid kinase activity of PI 3-K, but may be mediated by increased p110 autophosphorylation and/or other, as yet unidentified, intracellular protein/protein interactions. We further observe that tagged recombinant protein is suitable for use in in vitro lipid kinase screens to identify PI 3-K inhibitors; however, we recommend that in vivo (including intracellular) experiments and investigations into the protein kinase activity of PI 3-K should be conducted with untagged constructs.  相似文献   

6.
The E5 oncoprotein of bovine papillomavirus type 1 is a Golgi-resident, 44-amino acid polypeptide that can transform fibroblast cell lines by activating endogenous platelet-derived growth factor receptor beta (PDGF-R). However, the recent discovery of E5 mutants that exhibit strong transforming activity but minimal PDGF-R tyrosine phosphorylation indicates that E5 can potentially use additional signal transduction pathway(s) to transform cells. We now show that two classes of E5 mutants, despite poorly activating the PDGF-R, induce tyrosine phosphorylation and activation of phosphoinositide 3-kinase (PI 3-K) and that this activation is resistant to a selective inhibitor of PDGF-R kinase activity, tyrphostin AG1296. Consistent with this independence from PDGF-R signaling, the E5 mutants fail to induce significant cell proliferation in the absence of PDGF, unlike wild-type E5 or the sis oncoprotein. Despite differences in growth factor requirements, however, both wild-type E5 and mutant E5 cell lines form colonies in agarose. Interestingly, activation of PI 3-K occurs without concomitant activation of the ras-dependent mitogen-activated protein kinase pathway. The known ability of constitutively activated PI 3-K to induce anchorage-independent cell proliferation suggests a mechanism by which the mutant E5 proteins transform cells.  相似文献   

7.
The DNA-dependent protein kinase functions in the repair of DNA double strand breaks (DSBs) and in V(D)J recombination. To gain insight into the function of DNA-PK in this process we have carried out a mutation analysis of Ku80 and DNA-PKcs. Mutations at multiple sites within the N-terminal two thirds of Ku80 result in loss of Ku70/80 interaction, loss of DNA end-binding activity and inability to complement Ku80 defective cell lines. In contrast, mutations in the carboxy terminal region of the protein do not impair DNA end-binding activity but decrease the ability of Ku to activate DNA-PK. To gain insight into important functional domains within DNA-PKcs, we have analysed defective mutants, including the mouse scid cell line, and the rodent mutants, irs-20 and V-3. Mutational changes in the carboxy terminal region have been identified in all cases. Our results strongly suggest that the C-terminus of DNA-PKcs is required for kinase activity.  相似文献   

8.
Abstract: Enzyme activities and protein levels of several protein and lipid kinases were measured in postmortem tissue from patients who died with amyotrophic lateral sclerosis (ALS) as well as from control subjects. Patients who died with ALS had increased activities and protein levels of phosphatidylinositol 3-kinase (PI 3-K) in particulate fractions of spinal cord tissue compared with control subjects. The PI 3-K activity increased with PI 3-K protein level, indicating no change in specific PI 3-K activity in ALS. No differences in PI 3-K activities were found in cytosolic fractions of spinal cord, or in motor and visual cortices, from ALS patients compared with those from controls. PI 3-K activities and protein levels were unchanged in brain tissue from patients who died with Alzheimer's disease compared with those from controls. PI 3-K is a lipid kinase that is important for cell survival and is activated in response to many growth factors. Increased PI 3-K activities in particulate fractions of spinal cord from ALS patients may be related to the increase of PI 3-K protein levels found in this tissue. The protein kinases Erk2, protein kinase B (PKB), and p70 ribosomal S6 kinase (S6K) showed no differences in activities in spinal cord tissue between ALS patients and controls. However, the amounts of PKB and S6K protein were significantly higher in ALS patients, whereas Erk2 protein amount was unchanged compared with controls. Protein kinase C activity was increased in spinal cord tissue from ALS patients, which is consistent with our previous report. The increased activity of PI 3-K in spinal cord tissue from patients with ALS implicates the involvement or activation of PI 3-K in ALS, as either a cause or a consequence of the neuron loss. The lack of up-regulation in the activities of PKB and S6K in ALS tissue supports an impairment in signal transduction cascades mediated by PI 3-K in this neurodegenerative disease.  相似文献   

9.
Previous studies in rat bile canalicular membrane vesicles and WIF-B9 cells revealed that cAMP-induced trafficking of ATP-binding cassette (ABC) transporters to the canalicular membrane and their activation require phosphoinositide 3-kinase (PI3-K) products. In the present studies, canalicular secretion of fluorescein isothiocyanate-glycocholate in WIF-B9 cells was increased by cAMP and a decapeptide that enhances PI3-K activity; these effects were inhibited by wortmannin. To determine the mechanism(s) whereby cAMP activates PI3-K, we examined signal transduction pathways in WIF-B9 and COS-7 cells. cAMP activated PI3-K in both cell lines in a phosphotyrosine-independent manner. PI3-K activity increased in association with p110 beta in both cell lines. The effect of cAMP was KT-5720 sensitive, suggesting involvement of protein kinase A. Expression of a dominant-negative beta-adrenergic receptor kinase COOH terminus (beta-ARKct), which blocks G beta gamma signaling, decreased PI3-K activation in both cell lines. cAMP increased GTP-bound Ras in COS-7 but not WIF-B9 cells. Expression of dominant-negative Ras abolished cAMP-mediated PI3-K, which suggests that the effect is downstream of Ras and G beta gamma. These data indicate that cAMP activates PI3-K in a cell type-specific manner and provide insight regarding mechanisms of PI3-K activation required for bile acid secretion.  相似文献   

10.
DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break (DSB) repair and V(D)J recombination. We have isolated a new X-ray-sensitive CHO cell line, XR-C1, which is impaired in DSB repair and which was assigned to complementation group 7, the group that is defective in the XRCC7 / SCID ( Prkdc ) gene encoding the catalytic subunit of DNA-PK (DNA-PKcs). Consistent with this complementation analysis, XR-C1 cells lackeddetectable DNA-PKcs protein, did not display DNA-PK catalytic activity and were complemented by the introduction of a single human chromosome 8 (providing the Prkdc gene). The impact of the XR-C1 mutation on V(D)J recombination was quite different from that found in most rodent cells defective in DNA-PKcs, which are preferentially blocked in coding joint formation, whereas XR-C1 cells were defective in forming both coding and signal joints. These results suggest that DNA-PKcs is required for both coding and signal joint formation during V(D)J recombination and that the XR-C1 mutant cell line may prove to be a useful tool in understanding this pathway.  相似文献   

11.
Activation of Lyn, a Src-related nonreceptor tyrosine kinase, in trophoblast cells is associated with trophoblast giant cell differentiation. The purpose of the present work was to use Lyn as a tool to identify signaling pathways regulating the endocrine differentiation of trophoblast cells. The Src homology 3 domain of Lyn was shown to display differentiation-dependent associations with other regulatory proteins, including phosphatidylinositol 3-kinase (PI3-K). PI3-K activation was dependent upon trophoblast giant cell differentiation. The downstream mediator of PI3-K, Akt/protein kinase B, also exhibited differentiation-dependent activation. Lyn is a potential regulator of the PI3-K/Akt signaling pathway, as are receptor tyrosine kinases. Protein tyrosine kinase profiling was used to identify two candidate regulators of the PI3-K/Akt pathway, fibroblast growth factor receptor-1 and Sky. At least part of the activation of Akt in differentiating trophoblast giant cells involves an autocrine growth arrest-specific-6-Sky signaling pathway. Inhibition of PI3-K activities via treatment with LY294002 disrupted Akt activation and interfered with the endocrine differentiation of trophoblast giant cells. In summary, activation of the PI3-K/Akt signaling pathway regulates the development of the differentiated trophoblast giant cell phenotype.  相似文献   

12.
DNA-dependent protein kinase (DNA-PK) is utilized in both DNA double-strand break repair (DSBR) and V(D)J recombination, but the mechanism by which this multiprotein complex participates in these proces­ses is unknown. To evaluate the importance of DNA-PK-mediated protein phosphorylation in DSBR and V(D)J recombination, we assessed the effects of the phosphatidyl inositol 3-kinase inhibitor wortmannin on the repair of ionizing radiation-induced DNA double-strand breaks and V(D)J recombination in the V(D)J recombinase inducible B cell line HDR37. Wortmannin radiosensitized HDR37, but had no affect on V(D)J recombination despite a marked reduction in DNA-PK activity. On the other hand, studies with mammalian expression vectors for wild-type human DNA-PK catalytic subunit (DNA-PKcs) and a kinase domain mutant demonstrated that only the kinase active form of DNA-PKcs can reconstitute DSBR and V(D)J recombination in a DNA-PKcs-deficient cell line (Sf19), implying that DNA-PKcs kinase activity is essential for both DSBR and V(D)J recombination. These apparently contradictory results were reconciled by analyses of cell lines varying in their expression of recombinant wild-type human DNA-PKcs. These studies establish that minimal DNA-PKcs protein levels are sufficient to support V(D)J recombination, but insufficient to confer resistance to ionizing radiation.  相似文献   

13.
Bruton's tyrosine kinase (Btk) plays a critical role in B cell Ag receptor (BCR) signaling, as indicated by the X-linked immunodeficiency and X-linked agammaglobulinemia phenotypes of mice and men that express mutant forms of the kinase. Although Btk activity can be regulated by Src-family and Syk tyrosine kinases, and perhaps by phosphatidylinositol 3,4,5-trisphosphate, BCR-coupled signaling pathways leading to Btk activation are poorly understood. In view of previous findings that CD19 is involved in BCR-mediated phosphatidylinositol 3-kinase (PI3-K) activation, we assessed its role in Btk activation. Using a CD19 reconstituted myeloma model and CD19 gene-ablated animals we found that BCR-mediated Btk activation and phosphorylation are dependent on the expression of CD19, while BCR-mediated activation of Lyn and Syk is not. Wortmannin preincubation inhibited the BCR-mediated activation and phosphorylation of Btk. Btk activation was not rescued in the myeloma by expression of a CD19 mutant in which tyrosine residues previously shown to mediate CD19 interaction with PI3-K, Y484 and Y515, were changed to phenylalanine. Taken together, the data presented indicate that BCR aggregation-driven CD19 phosphorylation functions to promote Btk activation via recruitment and activation of PI3-K. Resultant phosphatidylinositol 3,4,5-trisphosphate probably functions to localize Btk for subsequent phosphorylation and activation by Src and Syk family kinases.  相似文献   

14.
Engagement of the B-cell antigen receptor complex induces immediate activation of receptor-associated Src family tyrosine kinases including p55blk, p59fyn, p53/56lyn, and perhaps p56lck, and this response is accompanied by tyrosine phosphorylation of distinct cellular substrates. These kinases act directly or indirectly to phosphorylate and/or activate effector proteins including p42 (microtubule-associated protein kinase) (MAPK), phospholipases C-gamma 1 (PLC gamma 1) and C-gamma 2 (PLC gamma 2), phosphatidylinositol 3-kinase (PI 3-K), and p21ras-GTPase-activating protein (GAP). Although coimmunoprecipitation results indicate that the Src family protein tyrosine kinases interact physically with some of these effector molecules, the molecular basis of this interaction has not been established. Here, we show that three distinct sites mediate the interaction of these kinases with effectors. The amino-terminal 27 residues of the unique domain of p56lyn mediate association with PLC gamma 2, MAPK, and GAP. Binding to PI 3-K is mediated through the Src homology 3 (SH3) domains of the Src family kinases. Relatively small proportions of cellular PI 3-K, PLC gamma 2, MAPK, and GAP, presumably those which are tyrosine phosphorylated, bind to the SH2 domains of these kinases. Comparative analysis of binding activities of Blk, Lyn, and Fyn shows that these kinases differ in their abilities to associate with MAPK and PI 3-K, suggesting that they may preferentially bind and subsequently phosphorylate distinct sets of downstream effector molecules in vivo. Fast protein liquid chromatography Mono Q column-fractionated MAPK maintains the ability to bind bacterially expressed Lyn, suggesting that the two kinases may interact directly.  相似文献   

15.
Activation of the phosphatidylinositol-3 kinase (PI 3-K) pathway is associated with the proliferation of many cell types, including T lymphocytes. However, recent studies in cell lines stably expressing deletion mutants of IL-2R that fail to activate PI 3-K have questioned the requirement for this pathway in cell cycle regulation. In this study with IL-2 and IL-7, we show in primary T cells that, unlike IL-2, IL-7 fails to induce the early activation of PI 3-K seen within minutes and normally associated with cytokine signaling. However, kinetic experiments showed that both of these T cell growth factors induce a distinct and sustained phase of PI 3-K activity several hours after stimulation. This delayed activation correlates with cell cycle induction and from studies using inhibitors of PI 3-K signaling, we show that this later phase, unlike the early activation within minutes, is required for cell cycle induction. The data presented here will have major implications for our understanding of the mechanism of T cell proliferation as well as the regulation of PI 3-K activity.  相似文献   

16.
The radiosensitizing effect of wortmannin (WM) treatment during and after irradiation was studied in radioresistant bladder tumor cell lines with normal (MGH-U1 cells) or defective p53 activity (RT112 cells). WM modulated G2/M cell cycle arrest induced by higher X-ray doses (10 Gy) in both cell lines, although the alteration was significant only in RT112 cells. The observation suggests that WM activity is independent of p53. Constitutive expression of DNA-PKcs was found to be higher in RT112 cells than in MGH-U1. Treatment with WM enhanced radiation-induced apoptosis significantly in RT112 cells while it had no effect on MGH-U1 cells. Although a variety of PI3-kinases and PI3-K like kinases (including ATM) could be inhibited by WM, our observation of increased early lethality by WM treatment in RT112 is in agreement with previous results. They suggest that the WM-dependent radiosensitization of RT112 is a direct consequence of the inhibition of DNA-PK, resulting in the inhibition of DSB repair in the fast component. This early effect in the p53 deficient cell line could also indicate that processes other than apoptosis may contribute to the increased radiosensitization. In our opinion, the expression level of DNA-PKcs in human tumor cells may be a good predictor for the success of DNA-PKcs inhibitors when used as radiosensitizers.  相似文献   

17.
The DNA-dependent protein kinase (DNA-PK) complex plays a key role in DNA double-strand break (DSB) repair and V(D)J recombination. Using a genetic approach we have isolated cell mutants sensitive to ionizing radiation (IR) in the hope of elucidating the mechanism and components required for these pathways. We describe here, an X-ray-sensitive and DSB repair defective Chinese hamster ovary (CHO) cell line, XR-C2, which was assigned to the X-Ray Cross Complementation (XRCC) group 7. This group of mutants is defective in the XRCC7/SCID/Prkdc gene, which encodes the catalytic subunit of DNA-PK (DNA-PKcs). Despite the fact that XR-C2 cells expressed normal levels of DNA-PKcs protein, no DNA-PK catalytic activity could be observed in XR-C2, confirming the genetic analyses that these cells harbor a dysfunctional gene for DNA-PKcs. In contrast to other IR group 7 mutants, which contain undetectable or low levels of DNA-PKcs protein and which show a severe defect in V(D)J recombination, XR-C2 cells manifested only a mild defect in both coding and signal junction formation. The unique phenotype of the XR-C2 mutant suggests that a normal level of kinase activity is critical for radiation resistance but not for V(D)J recombination, whereas the overall structure of the DNA-PKcs protein appears to be of great importance for this process.  相似文献   

18.
Angiogenesis initiation is crucially dependent on endothelial proliferation and can be stimulated by the fibroblast growth factor 2 (FGF-2). The DNA dependent protein kinase (DNA-PK), long known for its importance in repairing DNA double strand breaks, belongs to the phosphatidylinositol-3 kinase (PI3-K) super family and has recently been identified as one of the enzymes phosphorylating and activating Akt. Due to its similarity with PI3-K, we hypothesized that DNA-PK may have similar effects on endothelial angiogenic processes and signalling. We used primary endothelial cells (HUVEC and PAEC) and human microvascular endothelial cells (HMEC) to study the role of DNA-PK in endothelial proliferation and signalling. DNA-PKcs suppression with the compound NU7026 or with siRNA induced basal endothelial cell proliferation as well as enhanced FGF-2 dependent proliferation. This was associated with an increase in phosphorylated Akt. Tube formation was not affected by DNA-PKcs clearly showing that the role of DNA-PK in endothelial processes differs from that of PI3-K. Our findings indicate DNA-PK as an important enzyme maintaining the quiescent endothelial phenotype by actively inhibiting Akt thus restraining endothelial cell proliferation preventing excessive growth.  相似文献   

19.
20.
The leucine rich region of DNA-PKcs contributes to its innate DNA affinity   总被引:2,自引:0,他引:2  
Gupta S  Meek K 《Nucleic acids research》2005,33(22):6972-6981
DNA-PK is a protein complex that consists of a DNA-binding, regulatory subunit [Ku] and a larger ~465 kDa catalytic subunit [DNA-PKcs], a serine/threonine protein kinase. The kinase activity of DNA-PKcs resides between residues 3745 and 4013, a PI3 kinase domain. Another recognized domain within this large protein is a leucine zipper (LZ) motif or perhaps more appropriately designated a leucine rich region (LRR) that spans residues 1503–1602. Whereas, DNA-PK's kinase activity has been shown to be absolutely indispensable for its function in non-homologous end joining (NHEJ), little is known about the functional relevance of the LRR. Here we show that DNA-PKcs with point mutations in the LRR can only partially reverse the radiosensitive phenotype and V(D)J recombination deficits of DNA-PKcs deficient cells. Disruption of the LRR motif affects the ability to purify DNA-PKcs via its binding to DNA-cellulose, but does not affect its interaction with Ku or its catalytic activity. These data suggest that the LRR region of DNA-PKcs may contribute to its intrinsic DNA affinity, and moreover, that intrinsic DNA binding is important for optimal function of DNA-PKcs in repairing double strand breaks in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号